Normal and Compact Solvability of the Exterior Derivation Operator in Orlicz Spaces Full article
Journal |
Journal of Mathematical Sciences (United States)
ISSN: 1072-3374 , E-ISSN: 1573-8795 |
||
---|---|---|---|
Output data | Year: 2023, Volume: 276, Number: 1, Pages: 98-110 Pages count : 13 DOI: 10.1007/s10958-023-06727-0 | ||
Authors |
|
||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0006 |
Abstract:
We study the normal and compact solvability of the operator of exterior derivation in Orlicz spaces of differential forms on compact Riemannian manifolds. We prove the compact solvability of the exterior derivation operator defined on an Orlicz space of differential forms corresponding to a Δ2 ∩∇2-regular N-function on a compact oriented smooth Riemannian manifold considered on its maximal and minimal domains containing all smooth forms with compact support.
Cite:
Kopylov Y.A.
Normal and Compact Solvability of the Exterior Derivation Operator in Orlicz Spaces
Journal of Mathematical Sciences (United States). 2023. V.276. N1. P.98-110. DOI: 10.1007/s10958-023-06727-0 Scopus РИНЦ OpenAlex
Normal and Compact Solvability of the Exterior Derivation Operator in Orlicz Spaces
Journal of Mathematical Sciences (United States). 2023. V.276. N1. P.98-110. DOI: 10.1007/s10958-023-06727-0 Scopus РИНЦ OpenAlex
Dates:
Submitted: | Jun 4, 2023 |
Published print: | Oct 23, 2023 |
Published online: | Oct 23, 2023 |
Identifiers:
Scopus: | 2-s2.0-85174587248 |
Elibrary: | 63797212 |
OpenAlex: | W4387877543 |
Citing:
Пока нет цитирований