Sciact
  • EN
  • RU

Normal and Compact Solvability of the Exterior Derivation Operator in Orlicz Spaces Full article

Journal Journal of Mathematical Sciences (United States)
ISSN: 1072-3374 , E-ISSN: 1573-8795
Output data Year: 2023, Volume: 276, Number: 1, Pages: 98-110 Pages count : 13 DOI: 10.1007/s10958-023-06727-0
Authors Kopylov Ya.A. 1
Affiliations
1 Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0006

Abstract: We study the normal and compact solvability of the operator of exterior derivation in Orlicz spaces of differential forms on compact Riemannian manifolds. We prove the compact solvability of the exterior derivation operator defined on an Orlicz space of differential forms corresponding to a Δ2 ∩∇2-regular N-function on a compact oriented smooth Riemannian manifold considered on its maximal and minimal domains containing all smooth forms with compact support.
Cite: Kopylov Y.A.
Normal and Compact Solvability of the Exterior Derivation Operator in Orlicz Spaces
Journal of Mathematical Sciences (United States). 2023. V.276. N1. P.98-110. DOI: 10.1007/s10958-023-06727-0 Scopus РИНЦ OpenAlex
Dates:
Submitted: Jun 4, 2023
Published print: Oct 23, 2023
Published online: Oct 23, 2023
Identifiers:
Scopus: 2-s2.0-85174587248
Elibrary: 63797212
OpenAlex: W4387877543
Citing: Пока нет цитирований
Altmetrics: