Тестовые фрагменты совершенных раскрасок циркулянтных графов Full article
Journal |
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304 |
||||
---|---|---|---|---|---|
Output data | Year: 2023, Volume: 20, Number: 2, Pages: 638-645 Pages count : 8 DOI: 10.33048/semi.2023.20.038 | ||||
Tags | perfect coloring, innite circulant graph, k-test fragment | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0018 |
Abstract:
Let G = (V,E) be a transitive graph. A subset T of the vertex set V (G) is a k-test fragment if for every perfect k-coloring ϕ of the graph G there exists a position of this fragment, whose partial coloring allows to reconstruct the whole ϕ. The objects of this study are k-test fragments of innite circulant graphs. An innite circulant graph with distances d1 < d2 < ... < dn is a graph, whose set of vertices is the set of integers, and two vertices i and j are adjacent if |i−j| ∈ {d1,d2,...,dn}. If di = i for all i from 1 to n, then the graph is called an in nite circulant graph with a continuous set of distances. Upper bounds for the cardinalities of minimal k-test fragments of innite circulant graphs with a continuous set of distances are obtained for any n and k. A rough estimate is also obtained in the general case for innite circulant graphs with distances d1,d2,...,dn and an arbitrary nite k.
Cite:
Лисицына М.А.
, Августинович С.В.
Тестовые фрагменты совершенных раскрасок циркулянтных графов
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2023. Т.20. №2. С.638-645. DOI: 10.33048/semi.2023.20.038 WOS Scopus
Тестовые фрагменты совершенных раскрасок циркулянтных графов
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2023. Т.20. №2. С.638-645. DOI: 10.33048/semi.2023.20.038 WOS Scopus
Dates:
Submitted: | Jan 5, 2023 |
Published print: | Nov 7, 2023 |
Published online: | Nov 7, 2023 |
Identifiers:
Web of science: | WOS:001164414700001 |
Scopus: | 2-s2.0-85176377773 |