Periodic Frobenius groups Full article
Journal |
Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260 |
||||
---|---|---|---|---|---|
Output data | Year: 2023, Volume: 64, Number: 6, Pages: 1350-1353 Pages count : 4 DOI: 10.1134/S0037446623060095 | ||||
Tags | periodic group, Frobenius group | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Russian Science Foundation | 23-41-10003 |
Abstract:
We find the conditions for a strongly isolated normal subgroup of a periodic group G with additional finiteness conditions to have a complement in G.
Cite:
Lytkina D.V.
, Mazurov V.D.
Periodic Frobenius groups
Siberian Mathematical Journal. 2023. V.64. N6. P.1350-1353. DOI: 10.1134/S0037446623060095 WOS Scopus РИНЦ OpenAlex
Periodic Frobenius groups
Siberian Mathematical Journal. 2023. V.64. N6. P.1350-1353. DOI: 10.1134/S0037446623060095 WOS Scopus РИНЦ OpenAlex
Original:
Лыткина Д.В.
, Мазуров В.Д.
О периодических группах Фробениуса
Сибирский математический журнал. 2023. Т.64. №6. С.1224-1228. DOI: 10.33048/smzh.2023.64.609 РИНЦ
О периодических группах Фробениуса
Сибирский математический журнал. 2023. Т.64. №6. С.1224-1228. DOI: 10.33048/smzh.2023.64.609 РИНЦ
Dates:
Submitted: | Aug 13, 2023 |
Accepted: | Sep 25, 2023 |
Published online: | Nov 17, 2023 |
Published print: | Nov 24, 2023 |
Identifiers:
Web of science: | WOS:001120902100003 |
Scopus: | 2-s2.0-85178888046 |
Elibrary: | 64337876 |
OpenAlex: | W4389379229 |
Citing:
DB | Citing |
---|---|
Elibrary | 1 |