Multivalued quasimöbius property and bounded turning Full article
Journal |
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304 |
||
---|---|---|---|
Output data | Year: 2023, Volume: 20, Number: 2, Pages: 1185-1199 Pages count : 15 DOI: 10.33048/semi.2023.20.073 | ||
Tags | multivalued quasimöbius mapping, multivalued hyperinjective mapping, Ptolemaic characteristic of tetrad, generalized angle, bounded angular distortion, local connectedness | ||
Authors |
|
||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0005 |
Abstract:
The class of multivalued mappings with bounded angular distortion (BAD) property in metric spaces can be considered as a multivalued analog for quasimöbius mappings. We study the connections between quasimeromorphic self-mappings of X = R ̄^n and multivalued mappings F : X → 2X with BAD property. The main result of the paper concerns the multivalued mappings F : D → 2^C with BAD property of a domain D ⊂ C ̄. If the image F(x) of each point x ∈ D is either a point or a continuum with bounded turning then F is proved to be a single-valued quasimobius mapping. The crucial point in the proof of this result is the local connectedness of the set F(X) for the multivalued continuous mapping F : X → 2^Y with BAD property. We obtain sufficient conditions providing F(X) to have local connectedness or bounded turning property in the most general case.
Cite:
Abrosimov N.V.
, Aseev V.V.
Multivalued quasimöbius property and bounded turning
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2023. V.20. N2. P.1185-1199. DOI: 10.33048/semi.2023.20.073 WOS Scopus РИНЦ
Multivalued quasimöbius property and bounded turning
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2023. V.20. N2. P.1185-1199. DOI: 10.33048/semi.2023.20.073 WOS Scopus РИНЦ
Dates:
Submitted: | Oct 1, 2023 |
Published print: | Nov 20, 2023 |
Published online: | Nov 20, 2023 |
Identifiers:
Web of science: | WOS:001102183700002 |
Scopus: | 2-s2.0-85179984008 |
Elibrary: | 82134659 |
Citing:
Пока нет цитирований