Sciact
  • EN
  • RU

Multivalued quasimöbius property and bounded turning Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2023, Volume: 20, Number: 2, Pages: 1185-1199 Pages count : 15 DOI: 10.33048/semi.2023.20.073
Tags multivalued quasimöbius mapping, multivalued hyperinjective mapping, Ptolemaic characteristic of tetrad, generalized angle, bounded angular distortion, local connectedness
Authors Abrosimov N.V. 1 , Aseev V.V. 1
Affiliations
1 Sobolev Institute of Mathematics

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0005

Abstract: The class of multivalued mappings with bounded angular distortion (BAD) property in metric spaces can be considered as a multivalued analog for quasimöbius mappings. We study the connections between quasimeromorphic self-mappings of X = R ̄^n and multivalued mappings F : X → 2X with BAD property. The main result of the paper concerns the multivalued mappings F : D → 2^C with BAD property of a domain D ⊂ C ̄. If the image F(x) of each point x ∈ D is either a point or a continuum with bounded turning then F is proved to be a single-valued quasimobius mapping. The crucial point in the proof of this result is the local connectedness of the set F(X) for the multivalued continuous mapping F : X → 2^Y with BAD property. We obtain sufficient conditions providing F(X) to have local connectedness or bounded turning property in the most general case.
Cite: Abrosimov N.V. , Aseev V.V.
Multivalued quasimöbius property and bounded turning
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2023. V.20. N2. P.1185-1199. DOI: 10.33048/semi.2023.20.073 WOS Scopus РИНЦ
Dates:
Submitted: Oct 1, 2023
Published print: Nov 20, 2023
Published online: Nov 20, 2023
Identifiers:
Web of science: WOS:001102183700002
Scopus: 2-s2.0-85179984008
Elibrary: 82134659
Citing: Пока нет цитирований
Altmetrics: