Sciact
  • EN
  • RU

О математическом моделировании COVID-19 Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2023, Volume: 20, Number: 2, Pages: 1211-1268 Pages count : 58 DOI: 10.33048/semi.2023.20.075
Tags epidemiology, COVID-19, time-series models, SIR, agentbased models, mean field games, inverse problems, forecasting
Authors Криворотько О.И. 1 , Кабанихин С.И. 1
Affiliations
1 Sobolev Institute of Mathematics

Funding (1)

1 Russian Science Foundation 23-71-10068

Abstract: The mathematical models for analysis and forecasting of COVID-19 pandemic based on time-series models, differential equations (SIR models based on odinary, partial and stochastic differential equations), agent-based models, mean field games and its combinations are considered. Inverse problems for mathematical models in epidemiology of COVID-19 are formulated in the variational form. The numerical results of modeling and scenarios of COVID-19 propagation in Novosibirsk region are demonstrated and discussed. The epidemiology parameters of COVID-19 propagation in Novosibirsk region (contagiosity, hospitalization and mortality rates, asymptomatic cases) are identified. The combination of differential and agent-based models increases the quality of forecast scenarios.
Cite: Криворотько О.И. , Кабанихин С.И.
О математическом моделировании COVID-19
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2023. Т.20. №2. С.1211-1268. DOI: 10.33048/semi.2023.20.075 WOS Scopus РИНЦ
Dates:
Submitted: Dec 12, 2022
Published print: Nov 21, 2023
Published online: Nov 21, 2023
Identifiers:
Web of science: WOS:001102184700001
Scopus: 2-s2.0-85179653188
Elibrary: 82134661
Citing:
DB Citing
Web of science 2
Scopus 2
Elibrary 5
Altmetrics: