Task approach in Artificial Intelligence: learning theory and knowledge hierarchy. Conference Abstracts
| Conference |
Мальцевские чтения : Международная конференция 13-17 Nov 2023 , Новосибирск |
||
|---|---|---|---|
| Source | Тезисы докладов Международной конференции "Мальцевские чтения", 13–17 ноября 2023г. Compilation, Новосибирск.2023. 208 c. |
||
| Output data | Year: 2023, Pages: 21 Pages count : 1 | ||
| Tags | задачный подход, теория обучения, искусственный интеллект | ||
| Authors |
|
||
| Affiliations |
|
Abstract:
The report will present a new learning theory and knowledge hierarchy in AI. This theory is based on the concept of the task approach proposed by A.N.Kolmagorov in the 1930s and then quite fully formalized by Y.L.Ershov and K.F.Samohvalov in the 2000s. Further, Goncharov, Sviridenko and Vityaev developed this direction in their work. Carl Hempel's work on the requirement of maximum specificity also played an important role in the development of learning theory.
Cite:
Nechesov A.V.
Task approach in Artificial Intelligence: learning theory and knowledge hierarchy.
In compilation Тезисы докладов Международной конференции "Мальцевские чтения", 13–17 ноября 2023г.. 2023. – C.21. РИНЦ
Task approach in Artificial Intelligence: learning theory and knowledge hierarchy.
In compilation Тезисы докладов Международной конференции "Мальцевские чтения", 13–17 ноября 2023г.. 2023. – C.21. РИНЦ
Identifiers:
| Elibrary: | 58092165 |
Citing:
Пока нет цитирований