Sciact
  • EN
  • RU

Complexity of the inversion operation in groups Full article

Journal Algebra and Logic
ISSN: 0002-5232 , E-ISSN: 1573-8302
Output data Year: 2023, Volume: 62, Number: 2, Pages: 103-118 Pages count : 16 DOI: 10.1007/s10469-024-09730-9
Tags computable group, inversion operations, primitive recursive function, quotient structure
Authors Alaev P.E. 1
Affiliations
1 Sobolev Institute of Mathematics

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0011

Abstract: We prove that if A =(A,·) is a group computable in polynomial time (P-computable), then there exists a P-computable group B =(B,·) ∼ =A, in which the operation x−1 is also P-computable. On the other hand, we show that if the center Z(A ) of a group A contains an element of infinite order, then under some additional assumptions, there exists a P-computable group B=(B,·) ∼ = A, in which the operation x−1 is not primitive recursive. Also the following general fact in the theory of P-computable structures is stated: if A is a P-computable structure and E ⊆ A2 is a P-computable congruence on A , then the quotient structure A /E is isomorphic to a P-computable structure.
Cite: Alaev P.E.
Complexity of the inversion operation in groups
Algebra and Logic. 2023. V.62. N2. P.103-118. DOI: 10.1007/s10469-024-09730-9 WOS Scopus РИНЦ OpenAlex
Original: Алаев П.Е.
Сложность операции обращения в группах
Алгебра и логика. 2023. Т.62. №2. С.155-178. DOI: 10.33048/alglog.2023.62.201 РИНЦ
Dates:
Submitted: May 12, 2022
Accepted: Jan 31, 2024
Published print: Feb 13, 2024
Published online: Feb 13, 2024
Identifiers:
Web of science: WOS:001160582200001
Scopus: 2-s2.0-85185122495
Elibrary: 64812152
OpenAlex: W4391783264
Citing:
DB Citing
OpenAlex 1
Scopus 2
Altmetrics: