Sciact
  • EN
  • RU

On the Computability of Ordered Fields Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2023, Volume: 20, Number: 2, Pages: 1341-1360 Pages count : 20 DOI: 10.33048/semi.2023.20.081
Tags computable analysis, computability, index set, computable model theory, complexity.
Authors Korovina M.V. 1 , Kudinov O.V. 2
Affiliations
1 A.P. Ershov Institute of Informatics Systems
2 Sobolev Institute of Mathematics

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0011

Abstract: In this paper we develop general techniques for structures of computable real numbers generated by classes of total computable (recursive) functions with special requirements on basic operations in order to investigate the following problems: whether a generated structure is a real closed field and whether there exists a computable copy of a generated structure. We prove a series of theorems that lead to the result that there are no computable copies for E_n-computable real numbers, where E_n is a level in Grzegorczyk hierarchy, n ≥ 3. We also propose a criterion of computable presentability of an archimedean ordered field.
Cite: Korovina M.V. , Kudinov O.V.
On the Computability of Ordered Fields
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2023. V.20. N2. P.1341-1360. DOI: 10.33048/semi.2023.20.081 Scopus РИНЦ
Dates:
Submitted: Aug 5, 2020
Published print: Nov 30, 2023
Published online: Nov 30, 2023
Identifiers:
Scopus: 2-s2.0-85179693345
Elibrary: 82134667
Citing: Пока нет цитирований
Altmetrics: