Coercive estimate for non-homogeneous differential operator on Heisenberg group Full article
Journal |
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304 |
||
---|---|---|---|
Output data | Year: 2025, | ||
Tags | Heisenberg group, integral representation formula, conformal mapping, coercive estimate | ||
Authors |
|
||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0006 |
Abstract:
We constructed a linear non-homogeneous di erential operator Q on the Heisenberg group, the kernel of which is interconnected with the Lie algebra of the group of conformal mappings. More precisely, the kernel of Q coincides with rst two coordinate functions of mappings of the Lie algebra of the conformal mappings. We received integral representation formula and proved a coercive estimate for this operator.
Cite:
Isangulova D.V.
Coercive estimate for non-homogeneous differential operator on Heisenberg group
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2025.
Coercive estimate for non-homogeneous differential operator on Heisenberg group
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2025.
Dates:
Submitted: | Nov 27, 2023 |
Identifiers:
No identifiers
Citing:
Пока нет цитирований