Sciact
  • EN
  • RU

Perfect and almost perfect homogeneous polytopes Full article

Journal Journal of Mathematical Sciences (United States)
ISSN: 1072-3374 , E-ISSN: 1573-8795
Output data Year: 2023, Volume: 271, Number: 6, Pages: 762-777 Pages count : 16 DOI: 10.1007/s10958-023-06765-8
Tags Almost perfect polytope · Convex polytope · Homogeneous polytope · Lattice · Linear group representation · Löwner — John ellipsoid · Perfect polytope
Authors Berestovskii V.N. 1 , Nikonorov Yu.G. 2
Affiliations
1 Sobolev Institute of Mathematics of the SB RAS
2 Southern Mathematical Institute of VSC RAS

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0006

Abstract: The paper is devoted to perfect and almost perfect homogeneous polytopes in Euclidean spaces. We have classified perfect and almost perfect polytopes among all regular polytopes and all semiregular polytopes except Archimedean solids and two four-dimensional Gosset polytopes. Also we have constructed some non-regular homogeneous polytopes that are (or are not) perfect and posed some unsolved questions.
Cite: Berestovskii V.N. , Nikonorov Y.G.
Perfect and almost perfect homogeneous polytopes
Journal of Mathematical Sciences (United States). 2023. V.271. N6. P.762-777. DOI: 10.1007/s10958-023-06765-8 Scopus РИНЦ OpenAlex
Dates:
Accepted: Nov 1, 2023
Published print: Dec 12, 2023
Published online: Dec 12, 2023
Identifiers:
Scopus: 2-s2.0-85179305851
Elibrary: 64243775
OpenAlex: W4389622180
Citing: Пока нет цитирований
Altmetrics: