Sciact
  • EN
  • RU

Perfect mixed codes from generalized Reed-Muller codes Full article

Journal Designs, Codes and Cryptography
ISSN: 0925-1022 , E-ISSN: 1573-7586
Output data Year: 2024, Volume: 92, Number: 1, Pages: 1-13 Pages count : 13 DOI: 10.1007/s10623-024-01364-3
Tags Mixed codes · Perfect codes · Quasi-perfect codes · Generalized Reed–Muller codes · MDS codes · Latin hypercubes
Authors Romanov Alexander M. 1
Affiliations
1 Sobolev Institute of Mathematics

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0018

Abstract: In this paper, we propose a new method for constructing 1-perfect mixed codes in the Cartesian product Fn × Fn q, where Fn and Fq are finite fields of orders n = qm and q. We consider generalized Reed-Muller codes of length n = qm and order (q − 1)m − 2. Codes whose parameters are the same as the parameters of generalized Reed-Muller codes are called Reed-Muller-like codes. The construction we propose is based on partitions of distance-2 MDS codes into Reed-Muller-like codes of order (q − 1)m − 2. We construct a set of qqcn nonequivalent 1-perfect mixed codes in the Cartesian product Fn ×Fn q , where the constant c satisfies c < 1, n = qm and m is a sufficiently large positive integer.We also prove that each 1-perfect mixed code in the Cartesian product Fn × Fn q corresponds to a certain partition of a distance-2 MDS code into Reed-Muller-like codes of order (q − 1)m − 2.
Cite: Romanov A.M.
Perfect mixed codes from generalized Reed-Muller codes
Designs, Codes and Cryptography. 2024. V.92. N1. P.1-13. DOI: 10.1007/s10623-024-01364-3 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: May 25, 2023
Accepted: Jan 18, 2024
Published print: Feb 5, 2024
Published online: Feb 5, 2024
Identifiers:
Web of science: WOS:001157688500003
Scopus: 2-s2.0-85184257842
Elibrary: 65973021
OpenAlex: W4391541503
Citing:
DB Citing
OpenAlex 2
Web of science 1
Scopus 1
Elibrary 2
Altmetrics: