Sciact
  • EN
  • RU

Geometry and quasiclassical quantization of magnetic monopoles Full article

Journal Theoretical and Mathematical Physics (Russian Federation)
ISSN: 0040-5779 , E-ISSN: 1573-9333
Output data Year: 2024, Volume: 218, Number: 1, Pages: 129-144 Pages count : 16 DOI: 10.1134/s0040577924010094
Tags quasiclassical approximation, magnetic Laplacian, magnetic monopole
Authors Taimanov I.A. 1
Affiliations
1 Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0004

Abstract: We present the basic physical and mathematical ideas (P. Curie, Darboux, Poincar´ e, Dirac) that led to the concept of magnetic charge, the general construction of magnetic Laplacians for magnetic monopoles on Riemannian manifolds, and the results of Kordyukov and the author on the quasiclassical approximation for eigensections of these operators.
Cite: Taimanov I.A.
Geometry and quasiclassical quantization of magnetic monopoles
Theoretical and Mathematical Physics (Russian Federation). 2024. V.218. N1. P.129-144. DOI: 10.1134/s0040577924010094 WOS Scopus РИНЦ РИНЦ OpenAlex
Original: Тайманов И.А.
Геометрия и квазиклассическое квантование магнитных монополей
Теоретическая и математическая физика. 2024. Т.218. №1. С.149–167. DOI: 10.4213/tmf10559 РИНЦ OpenAlex
Dates:
Submitted: Jun 5, 2023
Accepted: Jun 7, 2023
Published print: Jan 31, 2024
Published online: Feb 1, 2024
Identifiers:
Web of science: WOS:001155091700009
Scopus: 2-s2.0-85183755720
Elibrary: 65922939 | 67311478
OpenAlex: W4391453265
Citing:
DB Citing
OpenAlex 1
Scopus 1
Web of science 1
Elibrary 2
Altmetrics: