Geometry and quasiclassical quantization of magnetic monopoles Full article
Journal |
Theoretical and Mathematical Physics (Russian Federation)
ISSN: 0040-5779 , E-ISSN: 1573-9333 |
||
---|---|---|---|
Output data | Year: 2024, Volume: 218, Number: 1, Pages: 129-144 Pages count : 16 DOI: 10.1134/s0040577924010094 | ||
Tags | quasiclassical approximation, magnetic Laplacian, magnetic monopole | ||
Authors |
|
||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0004 |
Abstract:
We present the basic physical and mathematical ideas (P. Curie, Darboux, Poincar´ e, Dirac) that led to the concept of magnetic charge, the general construction of magnetic Laplacians for magnetic monopoles on Riemannian manifolds, and the results of Kordyukov and the author on the quasiclassical approximation for eigensections of these operators.
Cite:
Taimanov I.A.
Geometry and quasiclassical quantization of magnetic monopoles
Theoretical and Mathematical Physics (Russian Federation). 2024. V.218. N1. P.129-144. DOI: 10.1134/s0040577924010094 WOS Scopus РИНЦ РИНЦ OpenAlex
Geometry and quasiclassical quantization of magnetic monopoles
Theoretical and Mathematical Physics (Russian Federation). 2024. V.218. N1. P.129-144. DOI: 10.1134/s0040577924010094 WOS Scopus РИНЦ РИНЦ OpenAlex
Original:
Тайманов И.А.
Геометрия и квазиклассическое квантование магнитных монополей
Теоретическая и математическая физика. 2024. Т.218. №1. С.149–167. DOI: 10.4213/tmf10559 РИНЦ OpenAlex
Геометрия и квазиклассическое квантование магнитных монополей
Теоретическая и математическая физика. 2024. Т.218. №1. С.149–167. DOI: 10.4213/tmf10559 РИНЦ OpenAlex
Dates:
Submitted: | Jun 5, 2023 |
Accepted: | Jun 7, 2023 |
Published print: | Jan 31, 2024 |
Published online: | Feb 1, 2024 |
Identifiers:
Web of science: | WOS:001155091700009 |
Scopus: | 2-s2.0-85183755720 |
Elibrary: | 65922939 | 67311478 |
OpenAlex: | W4391453265 |