Estimates of Alexandrov’s n-width of the compact set of c∞-smooth functions on a finite segment Full article
Journal |
Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260 |
||
---|---|---|---|
Output data | Year: 2024, Volume: 65, Number: 1, Pages: 1–10 Pages count : 10 DOI: 10.1134/S0037446624010014 | ||
Tags | compact set, n-width, infinitely differentiable function, Gevrey class | ||
Authors |
|
||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0008 |
Abstract:
We obtain two-sided estimates for Alexandrov’s n-width of the compact set of infinitely smooth functions boundedly embedded into the space of continuous functions on a finite segment.
Cite:
Belykh V.N.
Estimates of Alexandrov’s n-width of the compact set of c∞-smooth functions on a finite segment
Siberian Mathematical Journal. 2024. V.65. N1. P.1–10. DOI: 10.1134/S0037446624010014 WOS Scopus РИНЦ РИНЦ OpenAlex
Estimates of Alexandrov’s n-width of the compact set of c∞-smooth functions on a finite segment
Siberian Mathematical Journal. 2024. V.65. N1. P.1–10. DOI: 10.1134/S0037446624010014 WOS Scopus РИНЦ РИНЦ OpenAlex
Original:
Белых В.Н.
Оценки александровского n-поперечника компакта c∞-гладких функций на конечном отрезке
Сибирский математический журнал. 2024. Т.65. №1. С.3-14. DOI: 10.33048/smzh.2024.65.101 РИНЦ
Оценки александровского n-поперечника компакта c∞-гладких функций на конечном отрезке
Сибирский математический журнал. 2024. Т.65. №1. С.3-14. DOI: 10.33048/smzh.2024.65.101 РИНЦ
Dates:
Submitted: | Dec 6, 2022 |
Accepted: | Nov 28, 2023 |
Published print: | Feb 7, 2024 |
Published online: | Feb 7, 2024 |
Identifiers:
Web of science: | WOS:001158248700013 |
Scopus: | 2-s2.0-85188335053 |
Elibrary: | 65998401 | 67311543 |
OpenAlex: | W4391603980 |