Sciact
  • EN
  • RU

Distinct eigenvalues of the Transposition graph Full article

Journal Linear Algebra and Its Applications
ISSN: 0024-3795
Output data Year: 2024, Volume: 690, Pages: 132-141 Pages count : 11 DOI: 10.1016/j.laa.2024.03.011
Tags Transposition graph; integral graph; spectrum
Authors Konstantinova Elena V. 1,2,3 , Kravchuk Artrem 1,2
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State University
3 Three Gorges Mathematical Research Center, China Three Gorges University

Funding (2)

1 Sobolev Institute of Mathematics FWNF-2022-0017
2 Министерство науки и высшего образования РФ
Mathematical Center in Akademgorodok
075-15-2019-1613, 075-15-2022-281

Abstract: Transposition graph Tn is defined as a Cayley graph over the symmetric group generated by all transpositions. It is known that all eigenvalues of Tn are integers. Moreover, zero is its eigenvalue for any n ⩾ 4. But the exact distribution of the spectrum of the graph Tn is unknown. In this paper we prove that integers from the interval [−n−4 2 , n−4 2 ] lie in the spectrum of Tn for any n ⩾ 19.
Cite: Konstantinova E.V. , Kravchuk A.
Distinct eigenvalues of the Transposition graph
Linear Algebra and Its Applications. 2024. V.690. P.132-141. DOI: 10.1016/j.laa.2024.03.011 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Jun 6, 2023
Accepted: Mar 12, 2024
Published online: Mar 16, 2024
Published print: Mar 25, 2024
Identifiers:
Web of science: WOS:001217961100001
Scopus: 2-s2.0-85188832201
Elibrary: 67166592
OpenAlex: W4392883646
Citing:
DB Citing
Scopus 1
Web of science 1
Altmetrics: