Distinct eigenvalues of the Transposition graph Full article
Journal |
Linear Algebra and Its Applications
ISSN: 0024-3795 |
||||||
---|---|---|---|---|---|---|---|
Output data | Year: 2024, Volume: 690, Pages: 132-141 Pages count : 11 DOI: 10.1016/j.laa.2024.03.011 | ||||||
Tags | Transposition graph; integral graph; spectrum | ||||||
Authors |
|
||||||
Affiliations |
|
Funding (2)
1 | Sobolev Institute of Mathematics | FWNF-2022-0017 |
2 |
Министерство науки и высшего образования РФ Mathematical Center in Akademgorodok |
075-15-2019-1613, 075-15-2022-281 |
Abstract:
Transposition graph Tn is defined as a Cayley graph over the symmetric group generated by all transpositions. It is known that all eigenvalues of Tn are integers. Moreover, zero is its eigenvalue for any n ⩾ 4. But the exact distribution of the spectrum of the graph Tn is unknown. In this paper we prove that integers from the interval [−n−4 2 , n−4 2 ] lie in the spectrum of Tn for any n ⩾ 19.
Cite:
Konstantinova E.V.
, Kravchuk A.
Distinct eigenvalues of the Transposition graph
Linear Algebra and Its Applications. 2024. V.690. P.132-141. DOI: 10.1016/j.laa.2024.03.011 WOS Scopus РИНЦ OpenAlex
Distinct eigenvalues of the Transposition graph
Linear Algebra and Its Applications. 2024. V.690. P.132-141. DOI: 10.1016/j.laa.2024.03.011 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: | Jun 6, 2023 |
Accepted: | Mar 12, 2024 |
Published online: | Mar 16, 2024 |
Published print: | Mar 25, 2024 |
Identifiers:
Web of science: | WOS:001217961100001 |
Scopus: | 2-s2.0-85188832201 |
Elibrary: | 67166592 |
OpenAlex: | W4392883646 |