Sciact
  • EN
  • RU

Divisible Rigid Groups. IV. Definable Subgroups Full article

Journal Algebra and Logic
ISSN: 0002-5232 , E-ISSN: 1573-8302
Output data Year: 2020, Volume: 59, Number: 3, Pages: 237-252 Pages count : 16 DOI: 10.1007/s10469-020-09596-7
Tags definable subgroup; divisible group; rigid group
Authors Romanovskii N.S. 1,2
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk State University, Novosibirsk, Russian Federation
2 Novosibirsk State University

Abstract: A group G is said to be rigid if it contains a normal series G = G1 > G2 > … > Gm > Gm+1 = 1, whose quotients Gi/Gi+1 are Abelian and, when treated as right ℤ[G/Gi]-modules, are torsion-free. A rigid group G is divisible if elements of the quotient Gi/Gi+1 are divisible by nonzero elements of the ring ℤ[G/Gi]. We describe subgroups of a divisible rigid group which are definable in the signature of the theory of groups without parameters and with parameters. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
Cite: Romanovskii N.S.
Divisible Rigid Groups. IV. Definable Subgroups
Algebra and Logic. 2020. V.59. N3. P.237-252. DOI: 10.1007/s10469-020-09596-7 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000585009100004
Scopus: 2-s2.0-85094635251
OpenAlex: W3096865134
Citing:
DB Citing
Scopus 5
OpenAlex 4
Web of science 4
Altmetrics: