Two-dimensional Gavrilov flows Full article
Journal |
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304 |
||
---|---|---|---|
Output data | Year: 2024, Volume: 21, Number: 1, Pages: 247-258 Pages count : 12 DOI: 10.33048/semi.2024.21.017 | ||
Tags | Euler equations, Gavrilov flow. | ||
Authors |
|
||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0006 |
Abstract:
A steady solution to the Euler equations is called a Gavrilov ow if the velocity vector is orthogonal to the pressure gradient at any point. Such ows can be localized that yields compactly supported solutions to the Euler equations. Gavrilov ows exist in dimentions 2 and 3. We present a complete description of two-dimensional Gavrilov ows.
Cite:
Sharafutdinov V.A.
Two-dimensional Gavrilov flows
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2024. V.21. N1. P.247-258. DOI: 10.33048/semi.2024.21.017 WOS Scopus РИНЦ
Two-dimensional Gavrilov flows
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2024. V.21. N1. P.247-258. DOI: 10.33048/semi.2024.21.017 WOS Scopus РИНЦ
Dates:
Submitted: | May 29, 2023 |
Published print: | Mar 13, 2024 |
Published online: | Mar 13, 2024 |
Identifiers:
Web of science: | WOS:001200266800008 |
Scopus: | 2-s2.0-85191328941 |
Elibrary: | 82336242 |
Citing:
Пока нет цитирований