Uniqueness of Plane Stationary Navier–Stokes Flow Past an Obstacle Full article
Journal |
Archive for Rational Mechanics and Analysis
ISSN: 0003-9527 , E-ISSN: 1432-0673 |
||||
---|---|---|---|---|---|
Output data | Year: 2021, Volume: 240, Number: 3, Pages: 1487-1519 Pages count : 33 DOI: 10.1007/s00205-021-01640-9 | ||||
Authors |
|
||||
Affiliations |
|
Abstract:
We study the exterior problem for stationary Navier–Stokes equations in two dimensions describing a viscous incompressible fluid flowing past an obstacle. It is shown that, at small Reynolds numbers, the classical solutions constructed by Finn and Smith are unique in the class of D-solutions (that is, solutions with finite Dirichlet integral). No additional symmetry or decay assumptions are required. This result answers a long-standing open problem. In the proofs, we developed the ideas of the classical Ch. Amick paper (Acta Math. 1988). © 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH, DE, part of Springer Nature.
Cite:
Korobkov M.
, Ren X.
Uniqueness of Plane Stationary Navier–Stokes Flow Past an Obstacle
Archive for Rational Mechanics and Analysis. 2021. V.240. N3. P.1487-1519. DOI: 10.1007/s00205-021-01640-9 WOS Scopus OpenAlex
Uniqueness of Plane Stationary Navier–Stokes Flow Past an Obstacle
Archive for Rational Mechanics and Analysis. 2021. V.240. N3. P.1487-1519. DOI: 10.1007/s00205-021-01640-9 WOS Scopus OpenAlex
Identifiers:
Web of science: | WOS:000631736400002 |
Scopus: | 2-s2.0-85103282802 |
OpenAlex: | W3137033419 |