О локальной корректности задач с характеристическими свободными границами для гиперболических систем законов сохранения Full article
Journal |
Успехи математических наук
ISSN: 0042-1316 , E-ISSN: 2305-2872 |
||
---|---|---|---|
Output data | Year: 2024, Volume: 79, Number: 2(476), Pages: 145-182 Pages count : 38 DOI: 10.4213/rm10150 | ||
Tags | гиперболическая система законов сохранения, задача со свободной границей, характеристическая граница, локальная теорема существования и единственности, потеря производных в априорных оценках, неэллиптичность символа границы, вторичная симметризация, ручные оценки, метод Нэша–Мозера. | ||
Authors |
|
||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0008 |
Abstract:
Доказательство локального по времени существования и единственности гладкого решения задачи со свободной границей для гиперболической системы законов сохранения имеет дополнительные трудности, если свободная граница является характеристикой этой системы. Они связаны с потерей контроля над производными по нормальному к границе направлению, а также с возможной неэллиптичностью символа свободной границы. Другой особенностью задач с характеристическими свободными границами является то, что в абсолютном большинстве случаев в априорных оценках решений соответствующих линеаризованных задач имеет место потеря производных от коэффициентов и правых частей. Более того, граничные условия линеаризованной задачи могут оказаться недиссипативными, что затрудняет применение энергетического метода. В статье дано описание методов, позволяющих преодолевать указанные трудности. Основными примерами являются задачи со свободными границами для уравнений Эйлера и уравнений магнитной гидродинамики идеальной сжимаемой жидкости, для которых дается обзор современных результатов об их локальной корректности. Библиография: 61 название.
Cite:
Трахинин Ю.Л.
О локальной корректности задач с характеристическими свободными границами для гиперболических систем законов сохранения
Успехи математических наук. 2024. Т.79. №2(476). С.145-182. DOI: 10.4213/rm10150 РИНЦ OpenAlex
О локальной корректности задач с характеристическими свободными границами для гиперболических систем законов сохранения
Успехи математических наук. 2024. Т.79. №2(476). С.145-182. DOI: 10.4213/rm10150 РИНЦ OpenAlex
Translated:
Trakhinin Y.L.
On local well-posedness of problems with characteristic free boundary for hyperbolic systems of conservation laws
Russian Mathematical Surveys. 2024. V.79. N2. P.325-360. DOI: 10.4213/rm10150e WOS Scopus РИНЦ OpenAlex
On local well-posedness of problems with characteristic free boundary for hyperbolic systems of conservation laws
Russian Mathematical Surveys. 2024. V.79. N2. P.325-360. DOI: 10.4213/rm10150e WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: | Sep 14, 2023 |
Published print: | Apr 8, 2024 |
Published online: | Apr 8, 2024 |
Identifiers:
Elibrary: | 68552550 |
OpenAlex: | W4393856181 |
Citing:
Пока нет цитирований