Non-existence of a ternary constant weight (16,5,15;2048) diameter perfect code Full article
Journal |
Advances in Mathematics of Communications
ISSN: 1930-5346 , E-ISSN: 1930-5338 |
||||||||
---|---|---|---|---|---|---|---|---|---|
Output data | Year: 2016, Volume: 10, Number: 2, Pages: 393-399 Pages count : 7 DOI: 10.3934/amc.2016013 | ||||||||
Tags | diameter perfect code., Constant weight code | ||||||||
Authors |
|
||||||||
Affiliations |
|
Abstract:
Ternary constant weight codes of length $n=2^m$, weight $n-1$, cardinality $2^n$ and distance $5$ are known to exist for every $m$ for which there exists an APN permutation of order $2^m$, that is, at least for all odd $m \geq 3$ and for $m=6$. We show the non-existence of such codes for $m=4$ and prove that any codes with the parameters above are diameter perfect.
Cite:
Krotov D.
, Östergård P.R.J.
, Pottonen O.
Non-existence of a ternary constant weight (16,5,15;2048) diameter perfect code
Advances in Mathematics of Communications. 2016. V.10. N2. P.393-399. DOI: 10.3934/amc.2016013 WOS Scopus РИНЦ OpenAlex
Non-existence of a ternary constant weight (16,5,15;2048) diameter perfect code
Advances in Mathematics of Communications. 2016. V.10. N2. P.393-399. DOI: 10.3934/amc.2016013 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: | Aug 31, 2014 |
Published print: | May 1, 2016 |
Identifiers:
Web of science: | WOS:000377602300013 |
Scopus: | 2-s2.0-84964786809 |
Elibrary: | 27151577 |
OpenAlex: | W3098064218 |