Sciact
  • EN
  • RU

Differential Equations with a Small Parameter and Multipeak Oscillations Full article

Journal Journal of Applied and Industrial Mathematics
ISSN: 1990-4789 , E-ISSN: 1990-4797
Output data Year: 2024, Volume: 18, Number: 1, Pages: 18-35 Pages count : 18 DOI: 10.1134/s1990478924010034
Tags ordinary differential equation, small parameter, limit cycle, invariant manifold, Poincar´e map, kinetic model, multipeak self-oscillations
Authors Chumakov G.A. 1,3 , Chumakova N.A. 2,3
Affiliations
1 Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
2 Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
3 Novosibirsk State University, Novosibirsk, 630090, Russia

Funding (2)

1 Sobolev Institute of Mathematics FWNF-2022-0005
2 Boreskov Institute of Catalysis FWUR-2024-0037

Abstract: In this paper, we study a nonlinear dynamical system of autonomous ordinary differential equations with a small parameter µ such that two variables x and y are fast and another one z is slow. If we take the limit as µ → 0, then this becomes a “degenerate system” included in the one-parameter family of two-dimensional subsystems of fast motions with the parameter z in some interval. It is assumed that in each subsystem there exists a structurally stable limit cycle lz. In addition, in the complete dynamical system there is some structurally stable periodic orbit L that tends to a limit cycle lz0 for some z = z0 as µ tends to zero. We can define the first return map, or the Poincar´ e map, on a local cross section in the hyperplane (y,z) orthogonal to L at some point. We prove that the Poincar´ e map has an invariant manifold for the fixed point corresponding to the periodic orbit L on a guaranteed interval over the variable y, and the interval length is separated from zero as µ tends to zero. The proved theorem allows one to formulate some sufficient conditions for the existence and/or absence of multipeak oscillations in the complete dynamical system. As an example of application of the obtained results, we consider some kinetic model of the catalytic reaction of hydrogen oxidation on nickel.
Cite: Chumakov G.A. , Chumakova N.A.
Differential Equations with a Small Parameter and Multipeak Oscillations
Journal of Applied and Industrial Mathematics. 2024. V.18. N1. P.18-35. DOI: 10.1134/s1990478924010034 Scopus РИНЦ OpenAlex
Original: Чумаков Г.А. , Чумакова Н.А.
Дифференциальные уравнения с малым параметром и многопиковые автоколебания
Сибирский журнал индустриальной математики. 2024. Т.27. №1. 8 :1-18. DOI: 10.33048/SIBJIM.2024.27.107 РИНЦ
Dates:
Submitted: Sep 25, 2023
Accepted: Feb 7, 2024
Published print: Apr 26, 2024
Published online: Apr 26, 2024
Identifiers:
Scopus: 2-s2.0-85191370942
Elibrary: 66926146
OpenAlex: W4395679105
Citing: Пока нет цитирований
Altmetrics: