Sciact
  • EN
  • RU

On level energy and level characteristic polynomial of rooted trees Full article

Journal Electronic Journal of Mathematics
ISSN: 2789-5734
Output data Year: 2024, Volume: 7, Pages: 45-57 Pages count : 13 DOI: 10.47443/ejm.2024.020
Tags level index; level characteristic polynomial; level energy; distance energy; distance matrix; rooted trees.
Authors Dossou-Olory A.V. 1,2 , Killik Muhammed F. 3 , Konstantinova Elena V. 4,5 , Şahin Bünyamin 3
Affiliations
1 UAC - Université d’Abomey-Calavi = University of Abomey Calavi (Campus - BP 526 - Cotonou - Benin)
2 Institute of Mathematics and Physical Sciences, University of Abomey-Calavi, Dangbo, Benin
3 Selçuk University = Selçuk Üniversitesi (Konya - Turkey)
4 NSU - Novosibirsk State University (Pirogova str. 2, 630090 Novosibirsk - Russia)
5 Sobolev Institute of Mathematics

Funding (1)

1 Министерство науки и высшего образования РФ
Mathematical Center in Akademgorodok
075-15-2019-1613, 075-15-2022-281

Abstract: Based on the level index, a Wiener-like topological index proposed by Balaji and Mahmoud [J. Appl. Probab. 54 (2017), 701–709], we define the level matrix and study the level energy and the level characteristic polynomial of rooted trees. We establish relations between the level matrix and the usual distance matrix. We also determine various bounds on the level energy and calculate the level energy for specific tree families. Moreover, we provide an explicit expression of the level characteristic polynomial of the so-called rooted double stars and rooted binary caterpillars. Finally, we propose (and provide evidence to support) a conjecture that the rooted path maximises the level energy among all trees with a given number of vertices.
Cite: Dossou-Olory A.V. , Killik M.F. , Konstantinova E.V. , Şahin B.
On level energy and level characteristic polynomial of rooted trees
Electronic Journal of Mathematics. 2024. V.7. P.45-57. DOI: 10.47443/ejm.2024.020 РИНЦ OpenAlex
Dates:
Submitted: Mar 21, 2024
Accepted: Apr 24, 2024
Published print: May 1, 2024
Published online: May 1, 2024
Identifiers:
Elibrary: 67368159
OpenAlex: W4390854673
Citing:
DB Citing
OpenAlex 1
Altmetrics: