Sciact
  • EN
  • RU

On cubic graphs having the maximum coalition number Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2024, Volume: 21, Number: 1, Pages: 363-369 Pages count : 7 DOI: 10.33048/semi.2024.21.027
Tags dominating set, coalition number, cubic graph.
Authors Dobrynin A.A. 1 , Golmohammadi H. 1,2
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State University

Funding (2)

1 Sobolev Institute of Mathematics FWNF-2022-0017
2 Министерство науки и высшего образования РФ
Mathematical Center in Akademgorodok
075-15-2019-1613, 075-15-2022-281

Abstract: A coalition in a graph G with a vertex set V consists of two disjoint sets V1, V2 ⊂ V , such that neither V1 nor V2 is a dominating set, but the union V1 ∪ V2 is a dominating set in G. A partition of graph vertices is called a coalition partition P if every non-dominating set of P is a member of a coalition, and every dominating set is a single-vertex set. The coalition number C(G) of a graph G is the maximum cardinality of its coalition partitions. It is known that for cubic graphs C(G) ≤ 9. The existence of cubic graphs with the maximum coalition number is an unsolved problem. In this paper, an infinite family of cubic graphs satisfying C(G) = 9 is constructed.
Cite: Dobrynin A.A. , Golmohammadi H.
On cubic graphs having the maximum coalition number
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2024. V.21. N1. P.363-369. DOI: 10.33048/semi.2024.21.027 WOS Scopus
Dates:
Submitted: Apr 9, 2024
Published print: May 28, 2024
Published online: May 28, 2024
Identifiers:
Web of science: WOS:001283159700005
Scopus: 2-s2.0-85204484688
Citing:
DB Citing
Scopus 1
Altmetrics: