Sciact
  • EN
  • RU

On the Complexity of the Problem of Choice of Large Clusters Full article

Journal Journal of Applied and Industrial Mathematics
ISSN: 1990-4789 , E-ISSN: 1990-4797
Output data Year: 2024, Volume: 18, Number: 2, Pages: 312-315 Pages count : 4 DOI: 10.1134/S1990478924020121
Tags cluster, centroid, scatter, NP-hardness
Authors Pyatkin A.V. 1
Affiliations
1 Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0019

Abstract: The paper considers the following problem. Given a set of Euclidean vectors, find several clusters with a restriction on the maximum scatter of each cluster so that the size of the minimum cluster would be maximum. Here the scatter is the sum of squared distances from the cluster elements to its centroid. The NP-hardness of this problem is proved in the case where the dimension of the space is part of the input.
Cite: Pyatkin A.V.
On the Complexity of the Problem of Choice of Large Clusters
Journal of Applied and Industrial Mathematics. 2024. V.18. N2. P.312-315. DOI: 10.1134/S1990478924020121 Scopus РИНЦ OpenAlex
Original: Пяткин А.В.
О сложности задачи выбора кластеров большого размера
Дискретный анализ и исследование операций. 2024. Т.31. №2. С.113-119. DOI: 10.33048/daio.2024.31.787 РИНЦ
Dates:
Submitted: Nov 8, 2023
Accepted: Dec 22, 2023
Published print: Aug 15, 2024
Published online: Aug 15, 2024
Identifiers:
Scopus: 2-s2.0-85201409000
Elibrary: 68611707
OpenAlex: W4401604095
Citing: Пока нет цитирований
Altmetrics: