Study of the solvability of quasi-parabolic degenerate integro-differential equations of volterra type Conference Abstracts
Conference |
8th International conference Nonlinear Analysis and Extremal Problems (NLA-2024) 24-28 Jun 2024 , Иркутск |
||||
---|---|---|---|---|---|
Source | Proceedings of the 8th International School-Seminar on Nonlinear Analysis and Extremal Problems
(NLA-2024) Compilation, ISDCT SB RAS. Иркутск.2024. 313 c. ISBN 978-5-6041814-5-4. |
||||
Output data | Year: 2024, Pages: 26-27 Pages count : 2 | ||||
Tags | quasi-parabolic, integro-differential equations of volterra type, degeneration, boundary value problems, regular solutions, existence, uniqueness, квазипараболические, интегро-дифференциальные уравнения воль-терровского типа, вырождение, краевые задачи, регулярные решениях, существование, единственность | ||||
Authors |
|
||||
Affiliations |
|
Abstract:
The report presents results on the solvability of boundary value problems forquasi-parabolic integro-differential equations in which the function can vanish, and are either identical operatorsor linear operators elliptic in spatial variables. For the problems under study,the existence and uniqueness theorems for regular solutions are obtained, thatis, solutions that have all derivatives generalized according to S.L. Sobolev andincluded in the corresponding equation.
Cite:
Barotov B.K.
, Kozhanov A.I.
Study of the solvability of quasi-parabolic degenerate integro-differential equations of volterra type
In compilation Proceedings of the 8th International School-Seminar on Nonlinear Analysis and Extremal Problems (NLA-2024). – ISDCT SB RAS., 2024. – C.26-27. – ISBN 978-5-6041814-5-4. РИНЦ
Study of the solvability of quasi-parabolic degenerate integro-differential equations of volterra type
In compilation Proceedings of the 8th International School-Seminar on Nonlinear Analysis and Extremal Problems (NLA-2024). – ISDCT SB RAS., 2024. – C.26-27. – ISBN 978-5-6041814-5-4. РИНЦ
Dates:
Published print: | Sep 1, 2024 |
Published online: | Sep 1, 2024 |
Identifiers:
Elibrary: | 68637345 |
Citing:
Пока нет цитирований