Sciact
  • EN
  • RU

Численное моделирование эпидемического процесса с учетом локальных по времени и местоположению контактов индивидуумов Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2024, Volume: 21, Number: 2, Pages: 702-728 Pages count : 27 DOI: 10.33048/semi.2024.21.048
Tags epidemiology, SEIRS model, infection spread coefficient, differential equations with delay, asymptotic stability, semi-implicit Euler scheme, computational experiment.
Authors Перцев Н.В. 1 , Логинов К.К. 1
Affiliations
1 Sobolev Institute of Mathematics

Funding (1)

1 Омский филиал ФГБУН «Институт математики им. С.Л. Соболева СО РАН». FWNF-2022-0003

Abstract: A modi cation of SEIRS model of the epidemic process taking into account time- and place-local contacts of individuals is developed. The model on the base of a high-dimensional system of di erential equations with two delays, supplemented with initial data, is constructed. The correctness of model is studied. Conditions for the asymptotic stability of the trivial equilibrium state, which re ects the solution of the model in which there is no infection, is established. An expression for the infection spread coe cient is obtained. To solve the model numerically, a semi-implicit Euler scheme is used. The results of computational experiments with the model are presented. The signi cant inuence of the heterogeneity of cohorts of susceptible and infectious individuals on the dynamics of the epidemic process is shown. The results of tting solutions to the original high-dimensional model using its simpler modi cation are presented.
Cite: Перцев Н.В. , Логинов К.К.
Численное моделирование эпидемического процесса с учетом локальных по времени и местоположению контактов индивидуумов
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2024. Т.21. №2. С.702-728. DOI: 10.33048/semi.2024.21.048 WOS Scopus РИНЦ
Dates:
Submitted: Apr 8, 2024
Published print: Oct 11, 2024
Published online: Oct 11, 2024
Identifiers:
Web of science: WOS:001394114300011
Scopus: 2-s2.0-85207340894
Elibrary: 82336271
Citing: Пока нет цитирований
Altmetrics: