Non-elitist evolutionary algorithms excel in fitness landscapes with sparse deceptive regions and dense valleys Full article
Conference |
GECCO: Genetic and Evolutionary Computation Conference 10-14 Jul 2021 , Lille |
||||||||
---|---|---|---|---|---|---|---|---|---|
Source | Proceedings of the Genetic and Evolutionary Computation Conference Compilation, 2021. ISBN 978-1-4503-8350-9. |
||||||||
Output data | Year: 2021, Pages: 1133 - 1141 Pages count : 9 DOI: 10.1145/3449639.3459398 | ||||||||
Authors |
|
||||||||
Affiliations |
|
Cite:
Dang D-C.
, Eremeev A.
, Lehre P.K.
Non-elitist evolutionary algorithms excel in fitness landscapes with sparse deceptive regions and dense valleys
In compilation Proceedings of the Genetic and Evolutionary Computation Conference. 2021. – C.1133 - 1141. – ISBN 978-1-4503-8350-9. DOI: 10.1145/3449639.3459398 OpenAlex
Non-elitist evolutionary algorithms excel in fitness landscapes with sparse deceptive regions and dense valleys
In compilation Proceedings of the Genetic and Evolutionary Computation Conference. 2021. – C.1133 - 1141. – ISBN 978-1-4503-8350-9. DOI: 10.1145/3449639.3459398 OpenAlex
Dates:
Published print: | Jun 21, 2021 |
Identifiers:
OpenAlex: | W3162553722 |
Citing:
DB | Citing |
---|---|
OpenAlex | 23 |