Sciact
  • EN
  • RU

Spectrum of a linear problem about the MHD flows of a polymeric fluid in a cylindrical channel in case of an absolute conductivity (Generalized Vinogradov-Pokrovski model) Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2024, Volume: 21, Number: 2, Pages: 823-851 Pages count : 29 DOI: 10.33048/semi.2024.21.055
Tags incompressible viscoelastic polymeric medium, external homogenous magnetic field, rheological correlation, resting state, linearized mixed problem, Lyapunov stability.
Authors Tkachev D.L. 1 , Biberdorf E.A. 1
Affiliations
1 Sobolev Institute of Mathematics

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0008

Abstract: We study the linear stability of a resting state for flows of incompressible viscoelastic polymeric fluid under the influence of homogenous magnetic field in an infinite cylindrical channel in axisymmetric perturbation class. The tension vector of the magnetic field is parallel to the cylinder axis. We use structurally-phenomenological Vinogradov-Pokrovski model as our mathematical model. We formulate the equation that define the spectrum of the problem. Our numerical experiments show that with the growth of perturbations frequency along the channel axis there appear eigenvalues with positive real part for the radial velocity component of the first spectral equation. That guarantees linear Lyapunov instability of the resting state. However for large Reynolds and Weissenberg numbers the exponential growth rate of the amplitude for high frequencies can be suppressed to quite low values by increasing the magnetic pressure.
Cite: Tkachev D.L. , Biberdorf E.A.
Spectrum of a linear problem about the MHD flows of a polymeric fluid in a cylindrical channel in case of an absolute conductivity (Generalized Vinogradov-Pokrovski model)
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2024. V.21. N2. P.823-851. DOI: 10.33048/semi.2024.21.055 WOS Scopus
Dates:
Submitted: Jun 6, 2024
Published print: Oct 21, 2024
Published online: Oct 21, 2024
Identifiers:
Web of science: WOS:001394114300018
Scopus: 2-s2.0-85207362567
Citing: Пока нет цитирований
Altmetrics: