Note on normal approximation for number of triangles in heterogeneous Erdős-Rényi graph Full article
Journal |
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304 |
||||||
---|---|---|---|---|---|---|---|
Output data | Year: 2024, Volume: 21, Number: 2, Pages: 913-926 Pages count : 14 DOI: 10.33048/semi.2024.21.060 | ||||||
Tags | Erdos-Renyi random graphs, central limit theorem, large deviations principle. | ||||||
Authors |
|
||||||
Affiliations |
|
Funding (2)
1 | Sobolev Institute of Mathematics | FWNF-2022-0010 |
2 |
Министерство науки и высшего образования РФ Mathematical Center in Akademgorodok |
075-15-2019-1613, 075-15-2022-281 |
Abstract:
We obtain a bound for the convergence rate in the central limit theorem for the number of triangles in a heterogeneous Erdos-Renyi graphs. Our approach is reminiscent of Hoeffding decomposition (a common technique in the theory of U-statistics). We show that the centered and normalized number of triangles asymptotically behaves as the normalized sum of centered independent random variables when the number of vertices increases. The proposed method is simple and intuitive.
Cite:
Logachov A.V.
, Mogulskii A.A.
, Yambartsev A.A.
Note on normal approximation for number of triangles in heterogeneous Erdős-Rényi graph
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2024. V.21. N2. P.913-926. DOI: 10.33048/semi.2024.21.060 WOS Scopus
Note on normal approximation for number of triangles in heterogeneous Erdős-Rényi graph
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2024. V.21. N2. P.913-926. DOI: 10.33048/semi.2024.21.060 WOS Scopus
Dates:
Submitted: | Mar 7, 2024 |
Published print: | Nov 1, 2024 |
Published online: | Nov 1, 2024 |
Identifiers:
Web of science: | WOS:001396421100002 |
Scopus: | 2-s2.0-85212349816 |
Citing:
Пока нет цитирований