Sciact
  • EN
  • RU

Обобщенная мутация с тяжелыми хвостами для эволюционных алгоритмов Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2024, Volume: 21, Number: 2, Pages: 940-959 Pages count : 20 DOI: 10.33048/semi.2024.21.062
Tags Evolutionary algorithms; regularly varying functions; heavy-tailed mutation; optimization time
Authors Еремеев А.В. 1,2 , Силаев Д.В. 1 , Топчий В.А. 1,2
Affiliations
1 Novosibirsk State University, 1, Pirogova str., Novosibirsk, 630090, Russia
2 Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia

Funding (1)

1 Mathematical Center in Akademgorodok 075-15-2022-282

Abstract: The heavy-tailed mutation operator, proposed by Doerr, Le, Makhmara, and Nguyen (2017) for evolutionary algorithms, is based on the power-law assumption of mutation rate distribution. Here we generalize the power-law assumption using a regularly varying constraint on the distribution function of mutation rate. In this setting, we generalize the upper bounds on the expected optimization time of the (1 + (lambda, lambda)) genetic algorithm obtained by Antipov, Buzdalov and Doerr (2022) for the One Max function class parametrized by the problem dimension n. In particular, it is shown that, on this function class, the sufficient conditions of Antipov, Buzdalov and Doerr (2022) on the heavy-tailed mutation, ensuring the O(n) optimization time in expectation, may be generalized as well. This optimization time is known to be asymptotically faster than what can be achieved by the (1+(lambda, lambda)) genetic algorithm with any static mutation rate. A new version of the heavy-tailed mutation operator is proposed, satisfying the generalized conditions, and promising results of computational experiments are presented.
Cite: Еремеев А.В. , Силаев Д.В. , Топчий В.А.
Обобщенная мутация с тяжелыми хвостами для эволюционных алгоритмов
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2024. Т.21. №2. С.940-959. DOI: 10.33048/semi.2024.21.062 WOS Scopus
Dates:
Submitted: Apr 15, 2024
Published print: Nov 1, 2024
Published online: Nov 1, 2024
Identifiers:
Web of science: WOS:001396421100004
Scopus: 2-s2.0-85212327471
Citing: Пока нет цитирований
Altmetrics: