Sciact
  • EN
  • RU

Virtual braids and cluster algebras Full article

Journal Вестник Томского государственного университета. Математика и механика (Vestnik Tomskogo Gosudarstvennogo Universiteta, Matematika i Mekhanika)
ISSN: 1998-8621 , E-ISSN: 2311-2255
Output data Year: 2024, Number: 91, Pages: 18-30 Pages count : 13 DOI: 10.17223/19988621/91/2
Tags braid group, virtual braid group, cluster algebra
Authors Egorov Andrey A. 1,2,3
Affiliations
1 Tomsk State University
2 Novosibirsk State University
3 Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences

Funding (1)

1 Tomsk State University НУ 2.0.1.23 ОНТ Приоритет-2030

Abstract: In 2015, Hikami and Inoue constructed a representation of the braid group Bn in terms of cluster algebra associated with the decomposition of the complement of the corresponding knot into ideal hyperbolic tetrahedra. This representation leads to the calculation of the hyperbolic volume of the complement of the knot that is the closure of the corresponding braid. In this paper, based on the Hikami–Inoue representation discussed above, we construct a representation for the virtual braid group VBn. We show that the so-called “forbidden relations” do not hold in the image of the resulting representation. In addition, based on the developed method, we construct representations for the flat braid group FB n and the flat virtual braid group FVBn.
Cite: Egorov A.A.
Virtual braids and cluster algebras
Вестник Томского государственного университета. Математика и механика (Vestnik Tomskogo Gosudarstvennogo Universiteta, Matematika i Mekhanika). 2024. N91. P.18-30. DOI: 10.17223/19988621/91/2 WOS РИНЦ OpenAlex
Dates:
Submitted: Jul 17, 2024
Accepted: Oct 3, 2024
Published print: Nov 28, 2024
Published online: Nov 28, 2024
Identifiers:
Web of science: WOS:001368240300002
Elibrary: 74920365
OpenAlex: W4404747404
Citing: Пока нет цитирований
Altmetrics: