Sciact
  • EN
  • RU

Boundary value problems for third–order pseudoelliptic equations with degeneration Full article

Journal Математические заметки СВФУ (Mathematical Notes of NEFU)
ISSN: 2411-9326 , E-ISSN: 2587-876X
Output data Year: 2020, Volume: 27, Number: 3, Pages: 16-26 Pages count : 11 DOI: 10.25587/SVFU.2020.63.12.002
Tags Degeneration; Elliptic boundary value problem; Existence; Regular solution; Third-order differential equation; Uniqueness
Authors Kozhanov A.I. 1,2
Affiliations
1 Sobolev Institute of Mathematics, 4 Koptyug Avenue, Novosibirsk, 630090, Russian Federation
2 Novosibirsk State University, 1 Pirogov Street, Novosibirsk, 630090, Russian Federation

Abstract: We study the solvability in Sobolev spaces of the Dirichlet problem and other elliptic problems for the differential equations (Formula Presented) x ∈ Ω ⊂ ℝn, t ∈ (0, T), where ∆ if the Laplace operator acting in the variables x1, …, xn and B is a second-order elliptic operator acting in the same variables x1, …, xn. A fea-ture of the equations (∗) is that the sign of the function is not fixed in them. Existence and uniqueness theorems for regular solutions (having all generalized Sobolev’s deriva-tives in the equation) are proved for the problems under study. © 2020 A. I. Kozhanov.
Cite: Kozhanov A.I.
Boundary value problems for third–order pseudoelliptic equations with degeneration
Математические заметки СВФУ (Mathematical Notes of NEFU). 2020. V.27. N3. P.16-26. DOI: 10.25587/SVFU.2020.63.12.002 Scopus OpenAlex
Identifiers:
Scopus: 2-s2.0-85094846310
OpenAlex: W3214815017
Citing:
DB Citing
Scopus 1
Altmetrics: