New integer linear programming models for a variant of correlation clustering problem Conference Abstracts
Conference |
XXIII International Conference Mathematical Optimization Theory and Operations Research 30 Jun - 6 Jul 2024 , Омск |
||
---|---|---|---|
Source | MOTOR 2024: сборник тезисов XXIII Международной конференции «Теория математической оптимизации и исследование операций», (Омск, 30 июня – 06 июля 2024 г.) Compilation, Издательство ОмГУ. Омск.2024. 109 c. ISBN 978-5-7779-2691-3. |
||
Output data | Year: 2024, Pages: 70-71 Pages count : 2 | ||
Tags | correlation clustering, integer linear programming, cluster graph. | ||
Authors |
|
||
Affiliations |
|
Funding (1)
1 | Russian Science Foundation | 22-71-10015 |
Abstract:
In correlation clustering (cluster editing) we must split vertices of a graph into clusters based on their similarity, which is given by the edge structure of the graph. There are different formulations of the problem: with a constraint on the number of clusters, their cardinality, etc. The problems under consideration are NP-hard. Thus weneedtobuild exact algorithms and mathematical programming models. We consider a problem in which the number of clusters does not exceed a predefined constant. New integer linear programming models are constructed for this problem. We also provide an analysis of the experimental study, which aims to compare new models with known models.
Cite:
Morshinin A.
New integer linear programming models for a variant of correlation clustering problem
In compilation MOTOR 2024: сборник тезисов XXIII Международной конференции «Теория математической оптимизации и исследование операций», (Омск, 30 июня – 06 июля 2024 г.). – Издательство ОмГУ., 2024. – C.70-71. – ISBN 978-5-7779-2691-3.
New integer linear programming models for a variant of correlation clustering problem
In compilation MOTOR 2024: сборник тезисов XXIII Международной конференции «Теория математической оптимизации и исследование операций», (Омск, 30 июня – 06 июля 2024 г.). – Издательство ОмГУ., 2024. – C.70-71. – ISBN 978-5-7779-2691-3.
Dates:
Published print: | Jul 17, 2024 |
Published online: | Jul 17, 2024 |
Identifiers:
No identifiers
Citing:
Пока нет цитирований