Sciact
  • EN
  • RU

Non-Injectivity of the Lattice map for Non-Mixed Anderson T-Motives, and a Result Towards its Surjectivity Full article

Journal Journal of Algebra and its Applications
ISSN: 0219-4988
Output data Year: 2025, Article number : 2650028, Pages count : 15 DOI: 10.1142/s0219498826500283
Tags Anderson t-motives, lattice map
Authors Grishkov A. 1,2,3 , Logachev D. 4
Affiliations
1 Instituto de Matem´atica e estatisticaUniversidade de S˜ao Paulo
2 Omsk State University n.a. F.M.Dostoevskii
3 Sobolev Institute of Mathematics, Omsk, Russia
4 Departamento de Matem´atica Universidade Federal do Amazonas

Funding (1)

1 Омский филиал ФГБУН «Институт математики им. С.Л. Соболева СО РАН». FWNF-2022-0003

Abstract: Let M be an uniformizable Anderson t-motive and L(M) its lattice. First, we prove by an explicit construction that for the non-mixed M, the lattice map M→ L(M) is not injective. Second, we show that ∃ lattices L0 such that L0= L(M) for pure M, but ∃ a non-pure M such that L0 = L(M). This is a result towards surjectivity of the lattice map. The t-motives used in the proofs are non-pure t-motives of dimension 2, rank 3. Finally, we start calculations in order to answer a question whether all non-pure t-motives of dimension 2, rank 3 are uniformizable, or not.
Cite: Grishkov A. , Logachev D.
Non-Injectivity of the Lattice map for Non-Mixed Anderson T-Motives, and a Result Towards its Surjectivity
Journal of Algebra and its Applications. 2025. 2650028 :1-15. DOI: 10.1142/s0219498826500283 WOS Scopus РИНЦ OpenAlex
Dates:
Submitted: Jul 10, 2024
Accepted: Aug 27, 2024
Published online: Nov 27, 2024
Identifiers:
Web of science: WOS:001369984800001
Scopus: 2-s2.0-85210961618
Elibrary: 74148190
OpenAlex: W4402325088
Citing: Пока нет цитирований
Altmetrics: