Riemmanian metric of harmonic parametrization of geodesic quadrangles and quasi-isometric grids Full article
Journal |
Mathematics and Computers in Simulation
ISSN: 0378-4754 |
||
---|---|---|---|
Output data | Year: 2008, Volume: 78, Number: 5-6, Pages: 575-592 Pages count : 8 DOI: 10.1016/j.matcom.2008.04.001 | ||
Tags | Riemmanian metric; Harmonic parametrization; Geodesic quadrangle; Quasi-isometric grid. | ||
Authors |
|
||
Affiliations |
|
Abstract:
We consider the problem of generating a 2D structured boundary-fitting rectangular grid in a curvilinear quadrangle D with angles αi = φi + π/2, where −π/2 < φi < π/2, i = 1,…,4. We construct a quasi-isometric mapping of the unit square onto D; it is proven to be the unique solution to a special boundary-value problem for the Beltrami equations. We use the concept of “canonical domains”, i.e., the geodesic quadrangles with the angles α1,…,α4 on surfaces of constant curvature K = 4 sin (φ1 + φ2 + φ3 + φ4)/2, to introduce a special class of coefficients in the Beltrami equations with some attractive invariant properties. In this work we obtain the simplest formula representation of coefficients gjk, via a conformally equivalent Riemannian metric of harmonic parametrization of geodesic quadrangles. We also propose a new, more robust method to compute the metric for all parameter values.
Cite:
Chumakov G.A.
Riemmanian metric of harmonic parametrization of geodesic quadrangles and quasi-isometric grids
Mathematics and Computers in Simulation. 2008. V.78. N5-6. P.575-592. DOI: 10.1016/j.matcom.2008.04.001 WOS Scopus РИНЦ OpenAlex
Riemmanian metric of harmonic parametrization of geodesic quadrangles and quasi-isometric grids
Mathematics and Computers in Simulation. 2008. V.78. N5-6. P.575-592. DOI: 10.1016/j.matcom.2008.04.001 WOS Scopus РИНЦ OpenAlex
Dates:
Published online: | Apr 10, 2008 |
Identifiers:
Web of science: | WOS:000258195100002 |
Scopus: | 2-s2.0-46049120004 |
Elibrary: | 13581104 |
OpenAlex: | W1979021078 |
Citing:
Пока нет цитирований