Sciact
  • EN
  • RU

On the Theory of Computably Enumerable Linear Preorders with Concatenation Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2025, Volume: 66, Number: 2, Pages: 235–247 Pages count : 13 DOI: 10.1134/S0037446625020016
Tags computable reducibility, positive linear preorder, computably enumerable preorder, firstorder arithmetic, countable linear preorder
Authors Alish D.B. 1 , Bazhenov N.A. 1,2 , Kalmurzaev B.S. 1
Affiliations
1 Kazakh–British Technical University, Almaty, Kazakhstan
2 Sobolev Institute of Mathematics, Novosibirsk, Russia

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0011

Abstract: A preorder is linear whenever the corresponding quotient poset is linearly ordered. This article discusses computable reducibility on binary relations. We study the degree structure Celps of computably enumerable linear preorders under computable reducibility. Concatenation yields the ordered sum of two given linear preorders. We show that the elementary theory of Celps with concatenation is recursively isomorphic to first-order arithmetic. We also show that the theory of all countable linear preorders (under computable reducibility) with concatenation is recursively isomorphic to second-order arithmetic.
Cite: Alish D.B. , Bazhenov N.A. , Kalmurzaev B.S.
On the Theory of Computably Enumerable Linear Preorders with Concatenation
Siberian Mathematical Journal. 2025. V.66. N2. P.235–247. DOI: 10.1134/S0037446625020016 Scopus РИНЦ OpenAlex
Original: Алиш Д.Б. , Баженов Н.А. , Калмурзаев Б.С.
О теории вычислимо перечислимых линейных предпорядков с конкатенацией
Сибирский математический журнал. 2025. Т.66. №2. С.131-146. DOI: 10.33048/smzh.2025.66.201 РИНЦ
Dates:
Submitted: Aug 20, 2024
Accepted: Feb 25, 2025
Published print: Mar 23, 2025
Published online: Mar 23, 2025
Identifiers:
Scopus: 2-s2.0-105000706416
Elibrary: 80504511
OpenAlex: W4408735185
Citing: Пока нет цитирований
Altmetrics: