Decidable Models of Ehrenfeucht Theories Full article
Journal |
Algebra and Logic
ISSN: 0002-5232 , E-ISSN: 1573-8302 |
||||
---|---|---|---|---|---|
Output data | Year: 2025, DOI: 10.1007/s10469-025-09779-0 | ||||
Tags | Ehrenfeucht theory, countable model, computable structure, decidable structure, arithmetic structure, arithmetic type | ||||
Authors |
|
||||
Affiliations |
|
Funding (2)
1 | Sobolev Institute of Mathematics | FWNF-2022-0011 |
2 | Russian Science Foundation | 23-11-00170 |
Abstract:
We study countable models of Ehrenfeucht theories, i.e., complete theories with a finite number of countable models, strictly larger than 1. The notion of a primely generated model is introduced. It is proved that if all complete types of an Ehrenfeucht theory have arithmetic complexity, then any of the primely generated models of the theory possesses an arithmetically complex isomorphic presentation.
Cite:
Alaev P.E.
, Khlestova E.I.
Decidable Models of Ehrenfeucht Theories
Algebra and Logic. 2025. DOI: 10.1007/s10469-025-09779-0 WOS Scopus OpenAlex
Decidable Models of Ehrenfeucht Theories
Algebra and Logic. 2025. DOI: 10.1007/s10469-025-09779-0 WOS Scopus OpenAlex
Original:
Алаев П.Е.
, Хлестова Е.И.
Разрешимые модели эренфойхтовых теорий
Алгебра и логика. 2024. Т.63. №3. С.235–247. DOI: 10.33048/alglog.2024.63.301
Разрешимые модели эренфойхтовых теорий
Алгебра и логика. 2024. Т.63. №3. С.235–247. DOI: 10.33048/alglog.2024.63.301
Dates:
Submitted: | Feb 21, 2025 |
Accepted: | Apr 11, 2025 |
Published online: | May 5, 2025 |
Identifiers:
Web of science: | WOS:001481327600001 |
Scopus: | 2-s2.0-105004356662 |
OpenAlex: | W4410103983 |
Citing:
Пока нет цитирований