Sciact
  • EN
  • RU

Characterization of polystochastic matrices of order 4 with zero permanent Full article

Journal Journal of Combinatorial Theory. Series A
ISSN: 0097-3165 , E-ISSN: 1096-0899
Output data Year: 2025, Volume: 215, Article number : 106060, Pages count : 23 DOI: 10.1016/j.jcta.2025.106060
Tags Polystochastic matrix, Permanent of multidimensional matrix, Bitrade, Unitrade, Multidimensional permutation
Authors Perezhogin Aleksei L. 1 , Potapov Vladimir N. 3 , Taranenko Anna A. 1 , Vladimirov Sergey Yu. 2
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State University
3 Independent researcher

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0017

Abstract: A multidimensional nonnegative matrix is called polystochastic if the sum of its entries over each line is equal to 1. The permanent of a multidimensional matrix is the sum of products of entries over all diagonals. We prove that if d is even, then the permanent of a d-dimensional polystochastic matrix of order 4 is positive, and for odd d, we give a complete characterization of d-dimensional polystochastic matrices with zero permanent
Cite: Perezhogin A.L. , Potapov V.N. , Taranenko A.A. , Vladimirov S.Y.
Characterization of polystochastic matrices of order 4 with zero permanent
Journal of Combinatorial Theory. Series A. 2025. V.215. 106060 :1-23. DOI: 10.1016/j.jcta.2025.106060 WOS Scopus OpenAlex
Dates:
Submitted: Oct 14, 2024
Accepted: Apr 15, 2025
Published print: Apr 30, 2025
Published online: Apr 30, 2025
Identifiers:
Web of science: WOS:001494095200001
Scopus: 2-s2.0-105003841097
OpenAlex: W4410017261
Citing: Пока нет цитирований
Altmetrics: