Sciact
  • EN
  • RU

Classification of λ-homomorphic braces on ℤ2 Full article

Journal Communications in Algebra
ISSN: 0092-7872 , E-ISSN: 1532-4125
Output data Year: 2025, DOI: 10.1080/00927872.2025.2497412
Tags λ-homomorphic skew brace, skew brace, Yang-Baxter equation
Authors Nasybullov T. 1,2 , Novikov I. 1
Affiliations
1 Novosibirsk State University, Novosibirsk, Russia;
2 Sobolev Institute of Mathematics, Novosibirsk, Russia

Funding (1)

1 Sobolev Institute of Mathematics FWNF-2022-0005

Abstract: If A=(A,circle plus,circle dot) is a lambda-homomorphic brace with (A,circle plus)=Z(2), then the operations in this brace are given by formulas (a1 a2)circle plus(b1 b2)=(a1+b1a2+b2),(a1 a2)circle dot(b1 b2)=(a1 a2)+phi(a1)psi(a2)(b1 b2), where phi,psi is an element of GL2(Z) are cpecific matrices which depend on A. Not every pair (phi,psi) lead to a brace. In the present paper we find all possible pairs (phi,psi) of matrices from GL2(Z) which lead to lambda-homomorphic braces with (A,circle plus)=Z(2). The obtained result gives the full classification of lambda-homomorphic braces on Z(2) which was started by Bardakov, Neshchadim and Yadav.
Cite: Nasybullov T. , Novikov I.
Classification of λ-homomorphic braces on ℤ2
Communications in Algebra. 2025. DOI: 10.1080/00927872.2025.2497412 WOS OpenAlex
Dates:
Submitted: Oct 15, 2024
Accepted: Apr 8, 2025
Published online: May 10, 2025
Identifiers:
Web of science: WOS:001485069100001
OpenAlex: W4410252509
Citing: Пока нет цитирований
Altmetrics: