Recognizability in pre-Heyting and well-composed logics [Узнаваемость В Предгейтинговых И Стройных Логиках] Full article
Journal |
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304 |
||||
---|---|---|---|---|---|
Output data | Year: 2019, Volume: 16, Pages: 427-434 Pages count : 8 DOI: 10.33048/semi.2019.16.024 | ||||
Tags | Calculus; Heyting algebra; Johansson algebra; Minimal logic; Pre- Heyting logic; Recognizability; Strong recognizability; Superintuitionistic logic | ||||
Authors |
|
||||
Affiliations |
|
Abstract:
In this paper the problems of recognizability and strong recognizavility, perceptibility and strong perceptibility in extensions of the minimal Johansson logic J [1] are studied. These concepts were introduced in [2, 3, 4]. Although the intuitionistic logic Int is recognizable over J [2], the problem of its strong recognizability over J is not solved. Here we prove that Int is strong recognizable and strong perceptible over the minimal pre-Heyting logic Od and the minimal well-composed logic JX. In addition, we prove the perceptibility of the formula F over JX. It is unknown whether the logic J+F is recognizable over J. © 2019, Sobolev Institute of Mathematics.
Cite:
Maksimova L.L.
, Yun V.F.
Recognizability in pre-Heyting and well-composed logics [Узнаваемость В Предгейтинговых И Стройных Логиках]
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2019. V.16. P.427-434. DOI: 10.33048/semi.2019.16.024 WOS Scopus OpenAlex
Recognizability in pre-Heyting and well-composed logics [Узнаваемость В Предгейтинговых И Стройных Логиках]
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2019. V.16. P.427-434. DOI: 10.33048/semi.2019.16.024 WOS Scopus OpenAlex
Identifiers:
Web of science: | WOS:000462734100002 |
Scopus: | 2-s2.0-85071154488 |
OpenAlex: | W3015191523 |