Sciact
  • EN
  • RU

Recognizability in pre-Heyting and well-composed logics [Узнаваемость В Предгейтинговых И Стройных Логиках] Full article

Journal Сибирские электронные математические известия (Siberian Electronic Mathematical Reports)
, E-ISSN: 1813-3304
Output data Year: 2019, Volume: 16, Pages: 427-434 Pages count : 8 DOI: 10.33048/semi.2019.16.024
Tags Calculus; Heyting algebra; Johansson algebra; Minimal logic; Pre- Heyting logic; Recognizability; Strong recognizability; Superintuitionistic logic
Authors Maksimova L.L. 1,2 , Yun V.F. 1,2
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk State University, 4, pr. Koptyuga ave., 2, Pirogova str., Novosibirsk, 630090, Russian Federation
2 Novosibirsk State University

Abstract: In this paper the problems of recognizability and strong recognizavility, perceptibility and strong perceptibility in extensions of the minimal Johansson logic J [1] are studied. These concepts were introduced in [2, 3, 4]. Although the intuitionistic logic Int is recognizable over J [2], the problem of its strong recognizability over J is not solved. Here we prove that Int is strong recognizable and strong perceptible over the minimal pre-Heyting logic Od and the minimal well-composed logic JX. In addition, we prove the perceptibility of the formula F over JX. It is unknown whether the logic J+F is recognizable over J. © 2019, Sobolev Institute of Mathematics.
Cite: Maksimova L.L. , Yun V.F.
Recognizability in pre-Heyting and well-composed logics [Узнаваемость В Предгейтинговых И Стройных Логиках]
Сибирские электронные математические известия (Siberian Electronic Mathematical Reports). 2019. V.16. P.427-434. DOI: 10.33048/semi.2019.16.024 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000462734100002
Scopus: 2-s2.0-85071154488
OpenAlex: W3015191523
Citing:
DB Citing
Scopus 1
OpenAlex 1
Web of science 1
Altmetrics: