Triangle decompositions of PG(n-1,2) Full article
Journal |
Discrete Mathematics
ISSN: 0012-365X , E-ISSN: 1872-681X |
||||
---|---|---|---|---|---|
Output data | Year: 2026, Volume: 349, Number: 1, Article number : 114664, Pages count : 13 DOI: 10.1016/j.disc.2025.114664 | ||||
Tags | subspace design, graph decomposition, triangle design, Heffter's difference problem | ||||
Authors |
|
||||
Affiliations |
|
Funding (1)
1 | Sobolev Institute of Mathematics | FWNF-2022-0017 |
Abstract:
We define a triangle design as a partition of the set of lines of a projective space into triangles, where a triangle consists of three pairwise intersecting lines with no common point. A triangle design is balanced if all points are involved in the same number of triangles. We construct balanced triangle designs in PG$(n-1,2)$ for all admissible $n$ (congruent to $1$ modulo $6$) and an infinite class of balanced block-divisible triangle designs. We also prove that the existence of a triangle design in PG$(n-1,2)$ invariant under the action of the Singer cycle group is equivalent to the existence of a partition of $Z_{2^n-1}\backslash\{0\}$ into special $18$-subsets and find such partitions for $n=7$, $13$, $19$.
Cite:
Shi M.
, Li X.
, Krotov D.S.
Triangle decompositions of PG(n-1,2)
Discrete Mathematics. 2026. V.349. N1. 114664 :1-13. DOI: 10.1016/j.disc.2025.114664 WOS Scopus OpenAlex
Triangle decompositions of PG(n-1,2)
Discrete Mathematics. 2026. V.349. N1. 114664 :1-13. DOI: 10.1016/j.disc.2025.114664 WOS Scopus OpenAlex
Dates:
Submitted: | Jan 23, 2024 |
Accepted: | Jun 23, 2025 |
Published print: | Jul 7, 2025 |
Published online: | Jul 7, 2025 |
Identifiers:
Web of science: | WOS:001529807400001 |
Scopus: | 2-s2.0-105009863604 |
OpenAlex: | W4412067509 |
Citing:
Пока нет цитирований