Sciact
  • EN
  • RU

Differential envelopes of Novikov conformal algebras Full article

Journal International Journal of Algebra and Computation
ISSN: 0218-1967 , E-ISSN: 1793-6500
Output data Year: 2025, DOI: 10.1142/s0218196725500262
Tags Novikov algebra, conformal algebra, derivation, embedding
Authors Kolesnikov P.S. 1 , Nesterenko A.A. 2
Affiliations
1 Sobolev Institute of Mathematics
2 Novosibirsk State University

Funding (1)

1 Russian Science Foundation 25-41-00005

Abstract: A Novikov conformal algebra is a conformal algebra such that its coefficient algebra is right-symmetric and left commutative (i.e., it is an “ordinary” Novikov algebra). We prove that every Novikov conformal algebra with a uniformly bounded locality function on a set of generators can be embedded into a commutative conformal algebra with a derivation. In particular, every finitely generated Novikov conformal algebra has a commutative conformal differential envelope. For infinitely generated algebras this statement is not true in general.
Cite: Kolesnikov P.S. , Nesterenko A.A.
Differential envelopes of Novikov conformal algebras
International Journal of Algebra and Computation. 2025. DOI: 10.1142/s0218196725500262 WOS Scopus OpenAlex
Dates:
Submitted: Apr 20, 2025
Accepted: Jun 2, 2025
Published online: Jul 1, 2025
Identifiers:
Web of science: WOS:001519784000001
Scopus: 2-s2.0-105009479491
OpenAlex: W4411295862
Citing: Пока нет цитирований
Altmetrics: