Sciact
  • EN
  • RU

Asymptotic bounds on the numbers of vertices of polytopes of polystochastic matrices Full article

Journal Discrete Mathematics
ISSN: 0012-365X , E-ISSN: 1872-681X
Output data Year: 2026, Volume: 349, Number: 1, Pages: 114653 Pages count : 7 DOI: 10.1016/j.disc.2025.114653
Tags Polystochastic matrix, Birkhoff polytope, Vertices of a polytope, Asymptotic bound, Multidimensional permutation
Authors Potapov Vladimir N. 1 , Taranenko Anna A. 1
Affiliations
1 Sobolev Institute of Mathematics

Funding (2)

1 Sobolev Institute of Mathematics FWNF-2022-0017
2 Russian Science Foundation 22-21-00202

Abstract: Amultidimensional nonnegative matrix is called polystochastic if the sum of the entries in each line is equal to 1. The set of all polystochastic matrices of order n and dimension d forms a convex polytope Ωd n. In the present paper, we compare known bounds on the number of vertices of the polytope Ωd n and prove that the number of vertices of Ωd 3 is doubly exponential in d.
Cite: Potapov V.N. , Taranenko A.A.
Asymptotic bounds on the numbers of vertices of polytopes of polystochastic matrices
Discrete Mathematics. 2026. V.349. N1. P.114653. DOI: 10.1016/j.disc.2025.114653 WOS Scopus OpenAlex
Dates:
Submitted: Jun 21, 2024
Accepted: Jun 18, 2025
Published online: Jul 7, 2025
Published print: Jan 1, 2026
Identifiers:
Web of science: WOS:001530761200001
Scopus: 2-s2.0-105009281683
OpenAlex: W4412060237
Citing: Пока нет цитирований
Altmetrics: