Closures of permutation groups with restricted nonabelian composition factors Full article
Journal |
Bulletin of Mathematical Sciences
ISSN: 1664-3607 , E-ISSN: 1664-3615 |
||||||
---|---|---|---|---|---|---|---|
Output data | Year: 2025, DOI: 10.1142/s1664360725500122 | ||||||
Tags | Permutation group; Alt(d)-free group; k-closure | ||||||
Authors |
|
||||||
Affiliations |
|
Funding (1)
1 | Russian Science Foundation | 24-11-00127 |
Abstract:
Given a permutation group G on a finite set Ω, let G(k) denote the k-closure of G,that is, the largest permutation group on Ω having the same orbits in the induced action on Ωk as G. Recall that a group is Alt(d)-free if it does not contain a section isomorphic to the alternating group of degree d. Motivated by some problems in computational group theory, we prove that the k-closure of an Alt(d)-free group is again Alt(d)-free for k ≥ 4 and d ≥ 25.
Cite:
Ponomarenko I.
, Skresanov S.V.
, Vasil'ev A.V.
Closures of permutation groups with restricted nonabelian composition factors
Bulletin of Mathematical Sciences. 2025. DOI: 10.1142/s1664360725500122 WOS Scopus OpenAlex
Closures of permutation groups with restricted nonabelian composition factors
Bulletin of Mathematical Sciences. 2025. DOI: 10.1142/s1664360725500122 WOS Scopus OpenAlex
Dates:
Submitted: | Jun 22, 2024 |
Accepted: | Jun 14, 2025 |
Published online: | Jul 1, 2025 |
Identifiers:
Web of science: | WOS:001519779200001 |
Scopus: | 2-s2.0-105009489164 |
OpenAlex: | W4411499245 |
Citing:
Пока нет цитирований