Sciact
  • EN
  • RU

The Ozawa solution to the Davey-Stewartson II equations and surface theory Full article

Journal Regular and Chaotic Dynamics
ISSN: 1560-3547 , E-ISSN: 1468-4845
Output data Year: 2025, Volume: 30, Number: 4, Pages: 612-617 Pages count : 6 DOI: 10.1134/S1560354725040100
Tags spinor representation of surfaces, surface deformation, Davey – Stewartson II equation, Moutard transformation, singularity formation, two-dimensional Dirac operators
Authors Huang Yi C. 2 , Taimanov Iskander A. 1
Affiliations
1 Sobolev Institute of Mathematics
2 School of Mathematical Sciences, Nanjing Normal University

Funding (1)

1 Министерство науки и высшего образования РФ 075-15-2025-348

Abstract: We describe the Ozawa solution to the Davey – Stewartson II equation from the point of view of surface theory by presenting a soliton deformation of surfaces which is ruled by the Ozawa solution. The Ozawa solution blows up at a certain moment and we describe explicitly the corresponding singularity of the deformed surface.
Cite: Huang Y.C. , Taimanov I.A.
The Ozawa solution to the Davey-Stewartson II equations and surface theory
Regular and Chaotic Dynamics. 2025. V.30. N4. P.612-617. DOI: 10.1134/S1560354725040100 WOS Scopus РИНЦ
Dates:
Submitted: May 13, 2025
Accepted: Jul 9, 2025
Published print: Aug 11, 2025
Published online: Aug 11, 2025
Identifiers:
Web of science: WOS:001548326100017
Scopus: 2-s2.0-105013022259
Elibrary: 82740650
Citing: Пока нет цитирований
Altmetrics: