Generalized Angles in Ptolemaic Möbius Structures. II Full article
Journal |
Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260 |
||
---|---|---|---|
Output data | Year: 2018, Volume: 59, Number: 5, Pages: 768-777 Pages count : 10 DOI: 10.1134/S0037446618050038 | ||
Tags | HTB-space; inversion metric; inversion space; Möbius structure; Ptolemaic space; quasimöbius mapping; quasisymmetric mapping; uniformly perfect space | ||
Authors |
|
||
Affiliations |
|
Abstract:
We continue studying the BAD class of multivalued mappings of Ptolemaic Möbius structures in the sense of Buyalo with controlled distortion of generalized angles. In Möbius structures we introduce a Möbius-invariant version of the HTB property (homogeneous total boundedness) of metric spaces which is qualitatively equivalent to the doubling property. We show that in the presence of this property and the uniform perfectness property, a single-valued mapping is of the BAD class iff it is quasimöbius. © 2018, Pleiades Publishing, Ltd.
Cite:
Aseev V.V.
Generalized Angles in Ptolemaic Möbius Structures. II
Siberian Mathematical Journal. 2018. V.59. N5. P.768-777. DOI: 10.1134/S0037446618050038 WOS Scopus OpenAlex
Generalized Angles in Ptolemaic Möbius Structures. II
Siberian Mathematical Journal. 2018. V.59. N5. P.768-777. DOI: 10.1134/S0037446618050038 WOS Scopus OpenAlex
Identifiers:
Web of science: | WOS:000452230400003 |
Scopus: | 2-s2.0-85057490659 |
OpenAlex: | W4239138088 |