Sciact
  • EN
  • RU

Generalized Angles in Ptolemaic Möbius Structures. II Full article

Journal Siberian Mathematical Journal
ISSN: 0037-4466 , E-ISSN: 1573-9260
Output data Year: 2018, Volume: 59, Number: 5, Pages: 768-777 Pages count : 10 DOI: 10.1134/S0037446618050038
Tags HTB-space; inversion metric; inversion space; Möbius structure; Ptolemaic space; quasimöbius mapping; quasisymmetric mapping; uniformly perfect space
Authors Aseev V.V. 1
Affiliations
1 Sobolev Institute of Mathematics, Novosibirsk, Russian Federation

Abstract: We continue studying the BAD class of multivalued mappings of Ptolemaic Möbius structures in the sense of Buyalo with controlled distortion of generalized angles. In Möbius structures we introduce a Möbius-invariant version of the HTB property (homogeneous total boundedness) of metric spaces which is qualitatively equivalent to the doubling property. We show that in the presence of this property and the uniform perfectness property, a single-valued mapping is of the BAD class iff it is quasimöbius. © 2018, Pleiades Publishing, Ltd.
Cite: Aseev V.V.
Generalized Angles in Ptolemaic Möbius Structures. II
Siberian Mathematical Journal. 2018. V.59. N5. P.768-777. DOI: 10.1134/S0037446618050038 WOS Scopus OpenAlex
Identifiers:
Web of science: WOS:000452230400003
Scopus: 2-s2.0-85057490659
OpenAlex: W4239138088
Citing:
DB Citing
Scopus 10
OpenAlex 7
Web of science 10
Altmetrics: