Sciact
  • EN
  • RU

On A-Groups with the Same Index Set as a Nilpotent Group Full article

Journal Journal of Algebra
ISSN: 0021-8693 , E-ISSN: 1090-266X
Output data Year: 2026, Volume: 686, Pages: 836-844 Pages count : 9 DOI: 10.1016/j.jalgebra.2025.09.003
Tags Finite group, A-group, Conjugacy class
Authors Zhou Wei 1 , Gorshkov Ilya 2,3
Affiliations
1 School of Mathematical Sciences, Hebei Key Laboratory of Computational Mathematics and Applications, Hebei Normal University
2 Sobolev Institute of Mathematics
3 Novosibirsk State Technical University

Funding (1)

1 Министерство науки и высшего образования РФ 075-15-2025-348

Abstract: Let G be a finite group and N(G) be the set of conjugacy class sizes of G. For a prime p, let |G||p be the highest p-power dividing some element of N(G) and define |G|| = Πp∈π(G)|G||p. G is said to be an A-group if all its Sylow subgroups are abelian. We prove that if G is an A-group such that N(G) contains |G||p for every p ∈ π(G) as well as |G||, then G must be abelian. This result gives a positive answer to a question posed by Camina and Camina in 2006
Cite: Zhou W. , Gorshkov I.
On A-Groups with the Same Index Set as a Nilpotent Group
Journal of Algebra. 2026. V.686. P.836-844. DOI: 10.1016/j.jalgebra.2025.09.003 Scopus
Dates:
Submitted: Jun 20, 2025
Published online: Sep 17, 2025
Published print: Jan 15, 2026
Identifiers:
Scopus: 2-s2.0-105016144998
Citing: Пока нет цитирований
Altmetrics: