On a Lower Estimate of Alexandrov's n-Width of the Compact Set of Infinitely Smooth Aperiodic Functions in a Gevrey Class Full article
| Journal |
Siberian Advances in Mathematics
ISSN: 1055-1344 , E-ISSN: 1934-8126 |
||
|---|---|---|---|
| Output data | Year: 2025, Volume: 35, Number: 3, Pages: 186–192 Pages count : 7 DOI: 10.1134/S1055134425030010 | ||
| Tags | compact set, Gevrey class, topological dimension, Alexandrov’s n-width, amount of smoothness, unsaturation. | ||
| Authors |
|
||
| Affiliations |
|
Funding (1)
| 1 | Sobolev Institute of Mathematics | FWNF-2022-0008 |
Abstract:
We consider Alexandrov’s n-width of the compact set of aperiodic C∞-smooth functions
in a Gevrey class with α ≥ 1. On the basis of a majorant of the kth derivatives as k→∞, we
find a lower estimate for the rate of decay of this n-width as n→∞.
Cite:
Belykh V.N.
On a Lower Estimate of Alexandrov's n-Width of the Compact Set of Infinitely Smooth Aperiodic Functions in a Gevrey Class
Siberian Advances in Mathematics. 2025. V.35. N3. P.186–192. DOI: 10.1134/S1055134425030010 Scopus
On a Lower Estimate of Alexandrov's n-Width of the Compact Set of Infinitely Smooth Aperiodic Functions in a Gevrey Class
Siberian Advances in Mathematics. 2025. V.35. N3. P.186–192. DOI: 10.1134/S1055134425030010 Scopus
Original:
Белых В.Н.
Об оценке снизу величины александровского поперечника компакта бесконечно гладких непериодических функций класса Жевре
Математические труды. 2025. Т.28. №3. С.5-18. DOI: 10.25205/1560-750X-2025-28-3-5-18 РИНЦ
Об оценке снизу величины александровского поперечника компакта бесконечно гладких непериодических функций класса Жевре
Математические труды. 2025. Т.28. №3. С.5-18. DOI: 10.25205/1560-750X-2025-28-3-5-18 РИНЦ
Dates:
| Submitted: | Apr 8, 2025 |
| Accepted: | Jul 7, 2025 |
| Published print: | Oct 13, 2025 |
| Published online: | Oct 13, 2025 |
Identifiers:
| Scopus: | 2-s2.0-105018834263 |
Citing:
Пока нет цитирований