On a Family of Divisible Design Digraphs Full article
Journal |
Graphs and Combinatorics
ISSN: 0911-0119 , E-ISSN: 1435-5914 |
||||||
---|---|---|---|---|---|---|---|
Output data | Year: 2025, Volume: 41, Article number : 75, Pages count : 17 DOI: 10.1007/s00373-025-02941-6 | ||||||
Tags | Divisible design digraphs · Cayley digraphs · Weisfeiler–Leman dimension | ||||||
Authors |
|
||||||
Affiliations |
|
Abstract:
For every odd prime power q, a family of pairwise nonisomorphic normal arctransitive divisible design Cayley digraphs with isomorphic neighborhood designs over a Heisenberg group of order q3 is constructed. It is proved that these digraphs are not distinguished by the Weisfeiler–Leman algorithm and have the Weisfeiler–Leman dimension 3.
Cite:
Muzychuk M.
, Ryabov G.
On a Family of Divisible Design Digraphs
Graphs and Combinatorics. 2025. V.41. 75 :1-17. DOI: 10.1007/s00373-025-02941-6 WOS Scopus OpenAlex
On a Family of Divisible Design Digraphs
Graphs and Combinatorics. 2025. V.41. 75 :1-17. DOI: 10.1007/s00373-025-02941-6 WOS Scopus OpenAlex
Dates:
Submitted: | Nov 11, 2024 |
Accepted: | Jun 3, 2025 |
Published online: | Jun 9, 2025 |
Identifiers:
Web of science: | WOS:001504586000001 |
Scopus: | 2-s2.0-105007762817 |
OpenAlex: | W4411141343 |
Citing:
Пока нет цитирований