Sciact
  • EN
  • RU

On the solvable analogue of the Baer–Suzuki theorem and generation by conjugate trialities Full article

Journal Journal of Algebra
ISSN: 0021-8693 , E-ISSN: 1090-266X
Output data Year: 2026, Volume: 688, Pages: 445–453 Pages count : 9 DOI: 10.1016/j.jalgebra.2025.10.005
Tags Solvable radical, Simple orthogonal group, Triality, Conjugacy, Generators
Authors Revin Danila O. 1 , Zavarnitsine Andrei V. 1
Affiliations
1 Sobolev Institute of Mathematics, 4, Koptyug av. 630090, Novosibirsk, Russia

Funding (1)

1 Министерство науки и высшего образования РФ FWNF-2026-0017

Abstract: We propose a correction to a result by S. Guest which plays an important role in proving the well-known solvable analogue of the Baer–Suzuki theorem. Guest’s result states that, apart from an explicit list of exceptions, given an automorphism x of odd prime order of a nonabelian simple group S, there is always an element g ∈ S such that x and x g together generate a nonsolvable group. We show that, for a correct formulation of Guest’s theorem, the triality automorphism of both O+ 8(2) and O+ 8(3)should be added to the list of exceptions. To this end, we use calculations in GAP to clarify the structure of subgroups generated by conjugate graph automorphisms of order 3of O+ 8(2)and O+ 8(3).
Cite: Revin D.O. , Zavarnitsine A.V.
On the solvable analogue of the Baer–Suzuki theorem and generation by conjugate trialities
Journal of Algebra. 2026. V.688. P.445–453. DOI: 10.1016/j.jalgebra.2025.10.005 Scopus OpenAlex
Dates:
Submitted: Aug 5, 2025
Published online: Oct 10, 2025
Identifiers:
Scopus: 2-s2.0-105018870141
OpenAlex: W4415045705
Citing: Пока нет цитирований
Altmetrics: