Universal Cycles That Generate All Graphs of CoalitionPartitions in Cycles Full article
| Journal |
Journal of Applied and Industrial Mathematics
ISSN: 1990-4789 , E-ISSN: 1990-4797 |
||
|---|---|---|---|
| Output data | Year: 2025, Volume: 19, Number: 1, Pages: 33-39 Pages count : 7 DOI: 10.1134/s199047892501003x | ||
| Tags | graph, dominating set, coalition partition, coalition graph | ||
| Authors |
|
||
| Affiliations |
|
Funding (1)
| 1 | Sobolev Institute of Mathematics | FWNF-2022-0017 |
Abstract:
A coalition in a graph G is a pair of disjoint nondominating subsets of its vertices V1,V2 ⊂ V(G) such that V1 ∪ V2 is a dominating set. In the coalition partition π(G) = {V1,V2,...,Vk}, every nondominating set Vi is included in some coalition and if Vi is dominating, then it is a single-vertex set. A coalition partition of vertices of a graph G generates a coalition graph CG(G,π) whose vertices correspond to the partition sets, while two vertices are adjacent if the corresponding sets form a coalition. It is well known that all simple cycles of order greater than three generate in total 26 coalition graphs of order at most six. A universal cycle generates all such graphs. It is shown that only the cycles C3k, k ≥ 5, are universal.
Cite:
Glebov A.N.
, Dobrynin A.A.
Universal Cycles That Generate All Graphs of CoalitionPartitions in Cycles
Journal of Applied and Industrial Mathematics. 2025. V.19. N1. P.33-39. DOI: 10.1134/s199047892501003x Scopus РИНЦ OpenAlex
Universal Cycles That Generate All Graphs of CoalitionPartitions in Cycles
Journal of Applied and Industrial Mathematics. 2025. V.19. N1. P.33-39. DOI: 10.1134/s199047892501003x Scopus РИНЦ OpenAlex
Original:
Глебов А.Н.
, Добрынин А.А.
Универсальные циклы, порождающие все графы коалиционных разбиений циклов
Дискретный анализ и исследование операций. 2025. Т.32. №1. С.16–27. DOI: 10.33048/daio.2025.32.807 РИНЦ
Универсальные циклы, порождающие все графы коалиционных разбиений циклов
Дискретный анализ и исследование операций. 2025. Т.32. №1. С.16–27. DOI: 10.33048/daio.2025.32.807 РИНЦ
Dates:
| Submitted: | Jul 11, 2024 |
| Accepted: | Sep 22, 2024 |
| Published print: | Nov 2, 2025 |
| Published online: | Nov 2, 2025 |
Identifiers:
| Scopus: | 2-s2.0-105020663527 |
| Elibrary: | 83155448 |
| OpenAlex: | W4415775055 |
Citing:
Пока нет цитирований